• Title/Summary/Keyword: 열환경 평가

Search Result 937, Processing Time 0.036 seconds

Analysis of the Land Surface Temperature by the Anthropogenic Heat in the Urban Area of Seoul: An Example in Application of Satellite Images (서울 도심지의 인본열에 의한 지표온도 분석: 위성영상 적용 사례)

  • Bhang, Kon-Joon;Park, Seok-Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.4
    • /
    • pp.397-407
    • /
    • 2010
  • The increase of the solar reradiation from urban areas relative to suburban due to urbanization heats up the air temperature in urban areas and this is called the urban heat island (UHI) effect. This UHI effect has a positive relationship with the degree of urbanization. Through the studies on UHI using the satellite imagery, the effect of the surface heat radiation was observed by verifying the relationship between the air temperature and the land cover types (surface materials such as urban, vegetation, etc.). In this study, however, the surface temperature distribution was studied in terms of land use types for Seoul. Using land use types, the surface temperature in urban areas such as residential, industrial, and commercial areas in Yeongdeungpo, highly packed with industrial and residential buildings, was maximum $6^{\circ}C$ higher than in the bare ground, which indicated that the surface temperature reflected the pattern of the human-consumed energy on the areas and showed that one of the important causes influencing the air temperature except the surface heat reradiation by the sun is the anthropogenic heat. Also, the effect due to the restoration of the Chunggae stream on UHI was investigated. The average surface temperature for the Chunggae stream was reduced about $0.4^{\circ}C$ after restoration. Considering that each satellite image pixel includes mixture of several materials such as concrete and asphalt, the average surface temperature might be much lower locally reducing UHI near the stream.

Study on Cracking Causes and Patterns in Median Barrier and Guardrail Concrete in RC Bridge (콘크리트 교량 방호벽의 균열원인 및 패턴 분석에 대한 연구)

  • Choi, Se-Jin;Choi, Jung-Wook;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.19-26
    • /
    • 2014
  • Concrete guide rail and median barrier are an attached RC member, however they are vulnerable to cracking due to slip form construction and large surface of member. In this study, causes and pattern of cracking are analyzed through assessment and NDT (Non-Destructive Technique) evaluation for concrete guide rail and median barrier on highway structure. For this work, analysis on drying shrinkage and hydration heat are performed considering installation period, and plastic shrinkage is also analyzed considering their environmental conditions. From the evaluation, plastic settlement around steel location, drying/ plastic shrinkage, and aggregate segregation are inferred to be the main causes of cracking in the structures. The crack causes and patterns are schematized and techniques of crack-control are suggested. Furthermore concrete guide rail/ median barrier in the bridge on the sea are vulnerable to cracking at early age so that special attentions should be paid at the stages of material selection and construction.

Research about Multi-spectral Photographing System (PKNU No.2) Development (다중영상촬영을 위한 PKNU 2호 개발에 관한 연구)

  • 최철웅;김호용;전성우
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.4
    • /
    • pp.291-305
    • /
    • 2003
  • The cost of deploying Geological and Environmental information gathering systems, especially when such systems obtain remote sensing and photographic data through the use of commercial satellites and aircraft. Besides the high cost equipment required, adverse weather conditions can further restrict a researcher's ability to collect data anywhere and anytime. To mitigate this problem, we have developed a compact, multi-spectral automatic Aerial photographic system. This system's Multi-spectral camera is capable of the visible (RGB) and infrared (NIR) bands (3032*2008 pixel). It consists of a thermal infrared camera and automatic balance control, and can be managed by a palm-top computer. Other features includes a camera gimbal system, GPS receiver, weather sensor among others. We have evaluated the efficiency of this system in several field tests at the following locations: Kyongsang-bukdo beach, Nakdong river (at each site of mulkeum-namji and koryung-gumi), and Kyungahn River. Its tested ability in aerial photography, weather data, as well as GPS data acquisition demonstrates its flexibility as a tool for environmental data monitoring.

Performance Evaluation of Admixture for Durability Improvement of Shielding Materials Used Waste Glass as Fine Aggregate (폐유리를 잔골재로 사용한 차폐채움재의 내구성 개선을 위한 혼화재료의 성능평가)

  • Hwang, Byoung-Il;Kim, Hyo-Jung;Song, Yong-Soon;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.20-27
    • /
    • 2019
  • Compared to the development and manufacturing technology of electronic goods, the development of waste glass recycling technology is relatively insufficient, leading to the acceleration of waste of resources and environmental pollution. Although waste glass recycling technology is being actively developed overseas, waste glass recycling technology is insufficient in Korea, leading to the illegal dumping or burial of waste glass. Waste glass has been confirmed to have pozzolan reaction potential when having hydration reaction with cement. Waste glass is also reported to be effective in reducing bleeding and inhibiting the development of hydration heat by improving the physical properties of concrete and the rheology properties of fresh concrete. Therefore, this paper analyzed the strength characteristics and the effect of alkalic-silica reaction on the expansion of shielding concrete that used waste glass as fine aggregate. Where, suitable admixture materials were used as a measure to suppress the expansion.

Fabrication and thermal stability of flower-like CeO2 with high surface area via anisotropic crystallization of carbonate precipitation (탄산염 침전 전구체의 결정 이방성 제어를 통한 고 비표면적 flower-like CeO2 분말의 제조 및 고온 안정성 평가)

  • Kim, Hanbit;Shin, Tae Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.4
    • /
    • pp.160-166
    • /
    • 2019
  • Cerium oxide ($CeO_2$, often called as Ceria) is one of the valuable rare earth oxide materials, which has been widely used for high temperature applications such as solid oxide fuel cells, automotive three-way catalysts and oxygen storage capacity. Considering those application, it is important to improve high redox and thermal stability with high surface morphology because the high surface area of $CeO_2$ could improve the catalytic reactivity at high temperature conditions. Herein we successfully fabricated hierarchical flower-like $CeO_2$ deposited via controlling pathway of precipitation reaction to supply carbonate ion lead to the flower-like morphology. The hexagonal lattice system of precipitated precursor shows better thermal stability then orthorhombic one during thermal cycling condition.

Low flow projection considering actual evapotranspiration by climate change (기후변화에 따른 실제증발산을 고려한 갈수량 전망)

  • Kim, Eunji;Kang, Boosik;Sun, Hoyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.384-384
    • /
    • 2020
  • 갈수량은 연간 355번째에 해당하는 일유량으로 연중 10일은 유지할 수 있는 유량을 의미한다. 갈수량은 하천유지유량을 결정하고 다목적댐의 이수안전도를 평가하는 기준으로 활용되는 지표로 활용되고 있으나 현재 기준으로는 과거사상에 초점을 맞추어 산정되고 있다. 본 연구에서는 기후변화에 따른 수문사상의 변화로 인한 미래 극한사상에 대비한 평가기준 마련을 위하여 CMIP5의 GCM 자료를 활용한 한강수계의 소양강댐의 실제증발산량을 추정하고, 이를 고려한 갈수량을 전망하고자 한다. 실제증발산의 경우 관측자료가 부재하므로 증발산 보완관계 가설 기반의 간접계산을 통해 추정하였으며, 잠재증발산량은 FAO Penman-Monteith 공식, 습윤증발산량은 Priestley-Taylor공식을 활용하여 산정하였다. 기준기간(1974-2000년) GCM 자료의 보정은 강우 및 증발산에 대하여 정상성 분위사상법을 적용하였으며, 우리나라의 홍수기 특성을 반영하기 위하여 홍수기(6~9월) 및 비홍수기(10~5월)로 구분하였다. 소양강댐 유역에 대한 연단위 원시 GCM의 경우, 연단위 강우와 실제증발산 각각 -20.0%, +17.3%의 오차율을 보였으나, 지역오차보정 후 각각 -1.2%, -0.2%로 개선되었다. 전망기간(2011-2100년)에 대해서는 비정상성 분위사상법을 적용하였으며, 지역오차보정 과정을 거친 강우 및 실제증발산 자료는 장기유출모형의 입력자료로 활용되었다. 실제증발산을 고려한 유출량을 산정하기 위해 IHACRES 모형을 활용하였으며, 갈수량은 모형으로부터 산정된 유출 시계열에 대한 lognormal 분포의 누적확률밀도함수의 3%에 해당하는 값으로 결정하였다. 전망결과는 근미래(Near future, 2011~2040년), 중미래(Midcentury future, 2041~2070년), 먼미래(Distance future, 2071~2100년)로 나누어 제시하였으며, 미래구간별 추세를 반영한 증감율을 제시하였다.

  • PDF

Evaluation of stream flow prediction performance of hydrological model with MODIS LAI-based calibration (MODIS LAI 자료 기반의 수문 모형 보정을 통한 하천유량 예측 성능 평가)

  • Choi, Jeonghyeon;Kim, Sangdan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.288-288
    • /
    • 2021
  • 수문 모델링을 이용하여 미계측 유역의 유출을 예측하고 나아가 수문 현상을 이해하기 위해서는 기존과는 다른 새로운 모형 보정 전략과 평가 방법이 필요하다. 위성 관측자료의 가용성 증가는 미계측 유역에서 수문 모형의 예측 성능을 확보할 기회를 제공한다. 유역 내 증발산 과정은 물 순환 과정을 설명하는 주요한 부분 중 하나이다. 또한 식생에 대한 정보는 증발산 과정과 밀접한 연관을 가지기 때문에 간접적으로 유역의 증발산 과정을 이해할 수 있는 중요한 정보이다. 본 연구는 미계측 유역의 하천유량을 예측하기 위해 위성 관측 기반의 식생 정보만을 이용하여 보정된 생태 수문 모형의 잠재력을 조사한다. 이러한 보정 방법은 관측된 하천유량 자료가 있어야 하지 않기에 미계측 유역의 하천유량 예측에 특히 유용할 것이다. 모델링 실험은 관측 하천유량 자료가 존재하는 5개의 댐 유역(남강댐, 안동댐, 합천댐, 임하댐)에 대해 수행되었다. 본 연구에서는 식생동역학이 결합 된 집체형 수문 모델을 이용하였으며, MODIS 잎면적지수(Leaf Area Index, LAI) 자료를 이용하여 모형을 보정하였다. 보정된 모형으로부터 생산된 일 유량 결과는 관측 유량 자료와 비교된다. 또한, 전통적인 관측 유량 기반의 모형 보정 방법과 비교된다. 그 결과 LAI 시계열을 이용한 모형의 보정으로 획득한 유량의 적합도는 남강댐, 안동댐, 합천댐 유역에서 KGE가 임계치 이상으로 나타나 만족스러운 결과를 보여주지만, 임하댐 유역은 KGE가 임계치 이하로 계산되었다. 그러나 해당 유역에 대해 관측 유량을 기반으로 모형 보정 결과 또한 좋지 않은 적합도를 보여주기에 이는 LAI 자료 기반 접근법의 문제가 아닌 입력정보 또는 모형 자체에 포함된 오차로 인해 해당 유역의 특성을 반영하기에 어려운 것으로 판단된다. 이러한 결과는 증발산 과정에 주요한 식생 정보의 제약만으로도 비교적 만족스럽게 유역의 수문 순환을 재현할 수 있다는 가능성을 보여준다.

  • PDF

Characteristic of Injection According to CO2 Phases Using Surfactants (계면활성제를 활용한 이산화탄소 상태에 따른 주입특성 평가)

  • Seokgu Gang;Jongwon Jung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.6
    • /
    • pp.5-11
    • /
    • 2023
  • The engineering industry heavily relies on fossil fuels such as coal and petroleum to generate energy through combustion. However, this process emits carbon dioxide into the atmosphere, leading to global warming. To mitigate this issue, researchers have explored various methods to reduce carbon dioxide emissions, one of which is carbon dioxide underground storage technology. This innovative technology involves capturing carbon dioxide from industrial plants and injecting it into the saturated ground layer beneath the earth's surface, storing it securely underground. Despite its potential benefits, carbon dioxide underground storage efficiency needs improvement to optimize storage in a limited space. To address this challenge, our research team has focused on improving storage efficiency by utilizing surfactants. Furthermore, we evaluated how different carbon dioxide states, including gaseous, liquid, and supercritical, impact storage efficiency based on their respective pressures and temperatures within the underground reservoir. Our findings indicate that using surfactants and optimizing the injection rate can effectively enhance storage efficiency across all carbon dioxide states. This research will pave the way for more efficient carbon dioxide underground storage, contributing to mitigating the environmental impact of fossil fuels on the planet.

Adversarial Attacks on Reinforce Learning Model and Countermeasures Using Image Filtering Method (강화학습 모델에 대한 적대적 공격과 이미지 필터링 기법을 이용한 대응 방안)

  • Seungyeol Lee;Jaecheol Ha
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.5
    • /
    • pp.1047-1057
    • /
    • 2024
  • Recently, deep neural network-based reinforcement learning models have been applied in various advanced industrial fields such as autonomous driving, smart factories, and home networks, but it has been shown to be vulnerable to malicious adversarial attack. In this paper, we applied deep reinforcement learning models, DQN and PPO, to the autonomous driving simulation environment HighwayEnv and conducted three adversarial attacks: FGSM(Fast Gradient Sign Method), BIM(Basic Iterative Method), PGD(Projected Gradient Descent) and CW(Carlini and Wagner). In order to respond to adversarial attack, we proposed a method for deep learning models based on reinforcement learning to operate normally by removing noise from adversarial images using a bilateral filter algorithm. Furthermore, we analyzed performance of adversarial attacks using two popular metrics such as average of episode duration and the average of the reward obtained by the agent. In our experiments on a model that removes noise of adversarial images using a bilateral filter, we confirmed that the performance is maintained as good as when no adversarial attack was performed.

Performance Analysis of a Deep Vertical Closed-Loop Heat Exchanger through Thermal Response Test and Thermal Resistance Analysis (열응답 실험 및 열저항 해석을 통한 장심도 수직밀폐형 지중열교환기의 성능 분석)

  • Shim, Byoung Ohan;Park, Chan-Hee;Cho, Heuy-Nam;Lee, Byeong-Dae;Nam, Yujin
    • Economic and Environmental Geology
    • /
    • v.49 no.6
    • /
    • pp.459-467
    • /
    • 2016
  • Due to the limited areal space for installation, borehole heat exchangers (BHEs) at depths deeper than 300 m are considered for geothermal heating and cooling in the urban area. The deep vertical closed-loop BHEs are unconventional due to the depth and the range of the typical installation depth is between 100 and 200 m in Korea. The BHE in the study consists of 50A (outer diameter 50 mm, SDR 11) PE U-tube pipe in a 150 mm diameter borehole with the depth of 300 m. In order to compensate the buoyancy caused by the low density of PE pipe ($0.94{\sim}0.96g/cm^3$) in the borehole filled with ground water, 10 weight band sets (4.6 kg/set) were attached to the bottom of U-tube. A thermal response test (TRT) and fundamental basic surveys on the thermophysical characteristics of the ground were conducted. Ground temperature measures around $15^{\circ}C$ from the surface to 100 m, and the geothermal gradient represents $1.9^{\circ}C/100m$ below 100 m. The TRT was conducted for 48 hours with 17.5 kW heat injection, 28.65 l/min at a circulation fluid flow rate indicates an average temperature difference $8.9^{\circ}C$ between inlet and outlet circulation fluid. The estimated thermophysical parameters are 3.0 W/mk of ground thermal conductivity and 0.104 mk/W of borehole thermal resistance. In the stepwise evaluation of TRT, the ground thermal conductivity was calculated at the standard deviation of 0.16 after the initial 13 hours. The sensitivity analysis on the borehole thermal resistance was also conducted with respect to the PE pipe diameter and the thermal conductivity of backfill material. The borehole thermal resistivity slightly decreased with the increase of the two parameters.