• Title/Summary/Keyword: 열팽창률

Search Result 17, Processing Time 0.022 seconds

Thermophysical Properties of PWB for Microelectronic Packages with Solder Resist Coating Process (마이크로 전자패키지용 Printed Wiring Board의 솔더레지스트공정에 따른 열적특성)

  • 이효수
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.73-82
    • /
    • 2003
  • Recently, PWB(Printed Wiring Board) has been recognized in the field of microelectronic package as core technology for designing or manufacturing. PWB is the structure stacked by several materials with different thermophysical properties, which shows the different CTEs(Coefficient or Thermal Expansions) during the fabrication process and causes a lot of defects such as warpage, shrinkage, dimension, etc. Thermal deformation of PWB is affected mainly by the volume change of solder-resist among fabrication parameters. Therefore, thermal deformation of PBGA and CSP consisting of 2 layers and 4 layers was studied with solder-resist process. When over 30% in volume fraction of solder-resist, thermal deformation of 2-layered PWB was min. 40% higher than that of 4-layered PWB because 4-layered PWB contained the layer with high toughness such as prepreg, which counterbalanced the thermal deformation of solder-resist. Otherwise, when below 30%, PWB showed similar thermal deformation without regard to layers and design.

  • PDF

The Effect of Hair Spray on the Fitting of Contact Lenses (헤어스프레이가 콘택트렌즈의 피팅에 미치는 영향)

  • Chung, Jin Young;Kim, Dae Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • Various kinds of aerosols such as a mixture of hairspray resin and its solvents, a perfume, a soap water, and ask in-lotion were sprayed onto the contact lens which was mounted on the eye-model made of wood, varying the parameters as the distance between nozzle and contact lens and the spraying time duration. In the case of both the hairspray and the perfume including an ethanol as solvents, the shape of contact lenses has changed tremendously Jess than 1 minute after the exposure to the aerosol particles and then it continued until the lens surfaces were completely flipped over. Driving force for the lens distortion seems to be the expansion coefficient difference between the inner and outer surface of lens, which was caused by the heat of vaporization of ethanol included in the aerosol and subsequent temperature decrease induced on the lens surface.

  • PDF

A Study of Usability of Micro Shell as a Filler for Restoration of Iron Objects (Micro Shell을 이용한 철기 문화재 복원용 충전제의 사용성 연구)

  • Lee, Hyunji;Wi, Koangchul
    • Conservation Science in Museum
    • /
    • v.27
    • /
    • pp.91-102
    • /
    • 2022
  • Silica-based inorganic fillers for restoration of iron objects have been used for the reduction of thermal expansivity and the improvement of melt flow index. However, the higher the amount of filler is applied, the more degradation of mechanical properties and the yellowing occur, which could cause retreatment of the objects with adding stress to them. Thus, research on not only the quantification of a mixture of resin and filler but also the yellowing should be emphasized. Experiments on mechanical properties were carried out with a silica-based light filler, Micro Shell as a comparison group. The results of the experiment showed Micro Shell reduced the number of occurrences of the yellowing by 34% compared to existing fillers. The value of adhesion and specific gravity was also improved depending on the filler amount. The results of this research indicate the possibility of using Micro Shell as a new filler.

Mechanical Properties of Low Temperature and Fast Cure Epoxy with Various Mercaptans (Mercaptan 경화제에 의한 저온속경화 에폭시의 열적 기계적 물성)

  • Kim, Won Young;Eom, Se Yeon;Seo, Sang Bum;Lee, Kee Yoon
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.557-562
    • /
    • 2013
  • The thermal expansion and mechanical properties of diglycidyl ether of bisphenol A (DGEBA) with mercaptan hardeners were studied by a comparative method with an amine-adduct type hardener. Thermal expansion and dynamic mechanical properties were measured by thermo mechanical analysis (TMA) and dynamic mechanical ananlysis (DMA), respectively. The $T_g$ and the coefficient of thermal expansion (CTE) of epoxy/amine-adduct type hardener system were $82.6^{\circ}C$ and 71.2 $ppm/^{\circ}C$, respectively. As the number of -SH functional group of mercaptan hardener increased, the $T_g$ rapidly decreased and gradually increased up to ca. $80^{\circ}C$ and the CTE under the $T_g$ rapidly increased to ca. 200 $ppm/^{\circ}C$ from 80 $ppm/^{\circ}C$ and decreased to ca. 100 $ppm/^{\circ}C$. The crosslinking density of epoxy with amine-adduct type hardener was ca.1.5 $mol/cm^3$, while that of epoxy with mercaptan hardeners increased from 1.0 to 1.7 $mol/cm^3$, as the number of -SH functional group increased. The storage modulus can increase up to 2700MPa at $30^{\circ}C$.

Characteristics of Pr1-xMxMnO3(M=Ca, Sr) as a Cathode Material of Solid Oxide Fuel Cell (고체전해질형 연료전지용 Pr1-xMxMnO3(M-Ca, Sr) 산소극 재료의 특성)

  • Rim, Hyung-Ryul;Jeong, Soon-Ki;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1125-1131
    • /
    • 1996
  • Ca or Sr-doped $PrMnO_3$ were prepared for cathode material of solid oxide fuel cell. The characteristics such as the electrical conductivity and the cathodic overpotential were investigated as to doping contents. Also the reactivity with yttria stabilized zirconia of electrolyte, and the thermal expansion coefficient were studied. The prepared perovskite powder had the mean particle size of $2{\sim}5{\mu}m$, and the particle size and the surface area was out of relation to the doping content. When Ca doping amount of electrode material was 30mol%, the electrical conductivity was the highest value of $266S{\cdot}cm^{-1}$ at $1000^{\circ}C$, and also the polarization characteristics showed the best property. The reactivity between YSZ and Ca-doped $PrMnO_3$ at $1200^{\circ}C$ for 100hours was lower than that between YSZ and Sr-doped $PrMnO_3$. The thermal expansion coefficient of $Pr_{0.7}Ca_{0.3}MnO_3$ was $1.19{\times}10^{-5}K^{-1}$ in the temperature range of $300{\sim}1000^{\circ}C$, and this value was similar to that of YSZ, $1.15{\times}10^{-5}K^{-1}$.

  • PDF

Design of a pilot-scale helium heating system to support the SI cycle (파이롯 규모 SI 공정 시험 설비에서의 헬륨 가열 장치 설계)

  • Jang, Se-Hyun;Choi, Yong-Suk;Lee, Ki-Young;Shin, Young-Joon;Lee, Tae-Hoon;Kim, Jong-Ho;Yoon, Seok-Hun;Choi, Jae-Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.157-164
    • /
    • 2016
  • In this study, researchers performed preliminary design and numerical analysis for a pilot-scale helium heating system intended to support full-scale construction for a sulfur-iodine (SI) cycle. The helium heat exchanger used a liquefied petroleum gas (LPG) combustor. Exhaust gas velocity at the heat exchanger outlet was approximately 40 m/s based on computational thermal and flow analysis. The maximum gas temperature was reached with six baffles in the design; lower gas temperatures were observed with four baffles. The amount of heat transfer was also higher with six baffles. Installation of additional baffles may reduce fuel costs because of the reduced LPG exhausted to the heat exchanger. However, additional baffles may also increase the pressure difference between the exchanger's inlet and outlet. Therefore, it is important to find the optimum number of baffles. Structural analysis, followed by thermal and flow analysis, indicated a 3.86 mm thermal expansion at the middle of the shell and tube type heat exchanger when both ends were supported. Structural analysis conditions included a helium flow rate of 3.729 mol/s and a helium outlet temperature of $910^{\circ}C$. An exhaust gas temperature of $1300^{\circ}C$ and an exhaust gas rate of 52 g/s were confirmed to achieve the helium outlet temperature of $910^{\circ}C$ with an exchanger inlet temperature of $135^{\circ}C$ in an LPG-fueled helium heating system.

Characterization of Sun Spangle Formation in the Transparent Baltic Amber by Heat Treatment (열처리를 통한 발틱 호박의 Sun spangle생성에 관한 연구)

  • Chung, Hyo-Jin;Seo, Jin-Gyo;Park, Jong-Wan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.395-405
    • /
    • 2009
  • The maturity of amber matrix and inclusion was studied to explore the effect of heat treatment on the formation of the sun spangle in the transparent Baltic amber from Gdansk, Poland. Optical microscope revealed two types of inclusions in the original amber samples. The inclusions in the amber which had sun spangle were dramatically expanded by the heat treatment, comparing to those without sun spangle which contains fissure and shows different refractive index. The amber sample which didn't show sun spangle after the heat treatment showed a strong carbon related peak in TOF-SIMS spectra and weak oxygen related peak. it means that the maturity of this amber sample is comparatively higher than the one with spangle. The two amber samples show similar IR spectra before the heat treatment. However, the amber which had sun spangle exhibited an additional 1019 $cm^{-1}$ absorption peak and a more intense 887 $cm^{-1}$ peak. The different chemical compositions between the two types of amber is believed to be due to the different absorption spectra between 1000~600 $cm^{-1}$. According to the study of DSC analysis, the two samples show different DSC profiles. Although they have the same geological origin, their geological ages are different and have different chemical compositions. Thus, they exhibited different behavior after the heat treatment. The formation of sun spangle seemed to depend on the difference in the heat expansion rate of amber matrix with different maturity and chemical compositions.