• Title/Summary/Keyword: 열차운영효율

Search Result 80, Processing Time 0.034 seconds

Verification Review for Replace of Signalling System (신호시스템 절체방안 검증연구)

  • Jeong, Rag-Gyo;Kim, Beak-Hyeon;Lee, Jun-Ho;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1185_1186
    • /
    • 2009
  • 철도신호시스템은 열차들의 운행간격과 열차진로를 제어하는 기능을 담당함으로써 열차를 안전하고 효율적으로 운영하는 데 있어 핵심적인 역할을 수행한다. 철도신호시스템의 고장은 열차운행중지를 비롯하여 열차충돌이나 탈선등과 같은 치명적인 사고로 직결될 수 있기 때문에 시스템의 신뢰성과 안전성이 매우 중요하다. 현재까지 철도신호시스템에서는 지존의 지상신호방식이 많이 사용되어 왔으나 지상에 설치된 신호기 현시상태를 기관사가 확인하여 열차속도를 제어함으로써 기관사의 인적 오류 등의 사고 위험이 있다. 아울러 시스템의 수명이 다 되어 시스템절체의 필요성이 있다. 이에 따라 최근에는 컴퓨터 및 통신기술을 이용하여 열차속도제어 정보를 차상으로 송신하고, 차량에서 열차속도를 제어하는 차상신호방식이 도입 적용 되어 효과를 보고 있다. 따라서 수명이 다된 신호시스템을 교체하기 위하여 승객을 위한 운행서비스를 하면서 새로운 방식으로 절체 하는 것이 필요하다. 이에 본 논문에서는 시스템 절체과정의 절차와 시스템검증을 위한 일련의 과정중 간섭의 문제점을 시험평가를 통해 확인하였다.

  • PDF

A Review on signaling system for new high speed train test at the existing high speed line (기존 고속선에서 고속열차 최고속도시험을 위한 신호분야검토)

  • Lee, Jae-Ho;Shin, Duc-Ko;Lee, Kang-Mi
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1031-1033
    • /
    • 2008
  • 차세대 한국형 고속열차는 분산형 시스템으로 최고속도 400km/h, 운행속도 350km/h을 목표로 개발중에 있다. 차세대 고속열차의 신호시스템은 기존선의 자동열차정지(ATS, Automatic Train Stop) 및 자동열차방호(ATP, Automatic Train Protection)와 고속선의 자동열차제어(ATC, Automatic Train Control) 신호방식을 모두 사용하는 ATP+ATS+ATC 형태의 차상장치가 개발 설치될 예정이다. 따라서 이러한 장치의 개발과 연계하여 차세대 한국형 고속열차는 기존 경부고속선에서 시험주행을 할 예정이다. 따라서 기존 경부고속선에서 차세대 고속열차의 최고 속도시험를 위한 신호분야의 방안을 검토하고자 한다. 본 논문에서는 3가지의 방안을 제시하여 적합성과 운영효율성을 고려하여 최적의 방안을 도출하는 방식으로 전개할 예정이다.

  • PDF

A Study on Improved Safety and Efficiency of Shunting In View of Principles of Train Operation Safety (안전 및 효율성 제고를 위한 입환방식에 열차운전원칙 적용에 관한 연구)

  • Jeon, Young Seok
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.2
    • /
    • pp.79-84
    • /
    • 2013
  • The definition and classification of shunting, which involves the process of sorting rolling stock into complete train sets inside station yard, are not clearly specified in Korean domestic safety regulations for railway operations. As a result, collisions during shunting occur rather frequently compared with other types of accidents in railway operations. Therefore, new systematic safety principles are proposed in this paper to improve operation safety during shunting. The improvements in safety and efficiency derived from the newly proposed approach are analyzed and verified in field application.

Feasibility Study of Improved Train Control System Using On-board Controller for Intelligent Control of Trackside Facilities (선로변 시설물의 지능적 제어를 위한 차상중심 열차제어시스템 시뮬레이션 기반 성능 평가)

  • Baek, Jong-Hyen;Jo, Hyun-Jeong;Chae, Eun-Kyung;Choi, Hyun-Young;Kim, Yong-Gyu
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.6
    • /
    • pp.528-533
    • /
    • 2013
  • To improve the efficiency and safety of railway systems, the train control system has considerably evolved from the ground-equipment-based control system (e.g. track circuit, interlocking system, etc.) into the on-board-equipment-based control system. In addition, this train control system enables the rolling stock to intelligently control the trackside facilities by introducing information and communication technologies (ICT). Accordingly, since the ICT-based train control system simplifies the railway system (i.e. the heavy ground-equipment can be removed), an efficient and cost-effective railway system can be realized. In this paper, we perform a feasibility test of the ICT-based train control system using a simulation. To this end, we implement a test-bed consisting of prototype machines of on-board/ground equipment and introduce an integrated operation scenario for the train control. The simulation results satisfy all the requirements of train operation according to the scenario and show the effectiveness of the proposed train control system.

Complement of the Interlocking Logic of ATS for Heterogenous Railway Signaling Systems (이종 철도신호시스템을 위한 기존 자동열차정지 연동로직의 보완)

  • Jeong, Rag-Gyo;Kim, Baek-Hyun;Kang, Seok-Won;Byun, Yeun-Sub;Park, Geon-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.702-708
    • /
    • 2016
  • The railway signaling system has evolved to maximize its safety and maintainability based on the experiences in the construction and operation of railway systems. The newly developed systems was established to cope with the changes in an operating environment. In the process of a transition to the new system, both the existing ATS (Automatic Train Stop) and new ATP/ATO (Automatic Train Protection/Automatic Train Operation) systems are operating simultaneously in parallel. In this situation, modifications of the conditions of the interlocking diagram and logic are necessarily required on the existing ATS systems due to the frequent improvements in signaling equipment. This paper reports the enhancement of safety and operational efficiency of the system through an improvement of the security and the interlocking conditions of the existing ATS systems. The independent display of signals for each track was ensured to avoid giving the effect of On/Off signals for the selected track on the opposite side, and the security was improved by adjusting the position and interlocking conditions. In addition, the increased traffic density of railway systems was achieved by removing the unnecessary conditions and detailed signal display, which resulted in enhanced operational efficiency.

Line Planning Optimization Model for Intercity Railway (지역간 철도의 노선계획 최적화 모형)

  • Oh, Dongkyu;Kho, Seung-Young;Kang, Seungmo
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.2
    • /
    • pp.80-89
    • /
    • 2013
  • The purpose of this research is to optimize the line planning of the intercity passenger railway. In this study, the line planning problem has been formulated into a mixed integer programming by minimizing both user costs (passenger's total travel time) and operator costs (operation, maintenance and vehicle costs) with multiple train types. As a solution algorithm, the branch-and-bound method is used to solve this problem. The change of travel demand, train speed and the number of schedules have been tested through sensitivity analysis. The optimal stop-schedules and frequency as well as system split with respect to each train type have been found in the case study of Kyoung-bu railway line in Korea. The model and results of this research are useful to make a decision for railway operation strategy, to analyze the efficiency of new railway systems and to evaluate the social costs of users and operators.

An Alternative for Establishing a Logistics Cooperation System among Korea, China and Japan Focused on Rail-ferry System (열차훼리를 중심으로 한 한.중.일 물류협력체계 구축방안)

  • Cho, Sam-Hyun;Kim, Hyun-Duk
    • Journal of Korea Port Economic Association
    • /
    • v.23 no.1
    • /
    • pp.61-73
    • /
    • 2007
  • Creating more efficient and effective intermodal transportation service in Northeast range is a critical issue because of more increased trade volume & demand for intermodal service in the world market and geographical barriers associated with goods transportation, especially in Korea, China and Japan. This study examines the possibility of Rail-ferry introduction and possible route in Northest area which can provide each country mutual economical and logistical satisfaction. But, this study requires more empirical and concrete examination based on the cost & benefit analysis.

  • PDF

Study on the Speed Control Code Design for Fixed Block TCS (고정폐색 열차제어시스템 속도제어코드 설계에 관한 연구)

  • Lee, Kang-Mi;Shin, Kyung-Ho;Shin, Duc-Ko;Lee, Jae-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.37-41
    • /
    • 2012
  • Kyung-Bu High Speed Railway is operated in train control system(tcs) of fixed block operated in a way of dividing track circuits into several blocks in accordance with operation circumstances such as rolling stocks, grade, curves and facilities. The TCS of fixed block system refers to a continuous train control system, which transfers operational information such as entry and exit speed, distance-to-go, and deceleration etc. into on-board train control equipment on the basis of block occupancy of a preceding train. It guarantees a safe operation of trains by giving an emergency braking order, in case that a train exceeds an entry and exit speed of a corresponding block. In this paper, we analyze the speed control code deducing in accordance with maximum operation speed and characteristics of rolling stocks by analyzing principles of generation of speed control code allocated in blocks for safe operation, then train operational efficiency was analyzed by means of analysis of operation headway in accordance with the deduced speed control code. This study will be used to design in case of getting an increase in speed for existing high speed line or new high speed line TCS.

Preliminary Field Trial of Improved Train Control System Using on-board Control (선로변 시설물 차상 제어를 위한 차상중심 열차제어시스템 예비 현장시험)

  • Park, Chul Hong;Choi, Hyeon Yeong;Baek, Jong-Hyen
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.3
    • /
    • pp.298-306
    • /
    • 2014
  • The railway signalling system for safe train operation regulates the train speed to ensure the safety distance between consecutive trains by using wayside facilities such as track circuits and interlocking systems. In addition, this signalling system controls the trackside equipment such as a railway point along the train line. This ground-equipment-based train control systems require high CAPEX and OPEX. To deal with these problems, the train control system using the on-board controller has been recently proposed and its related technologies have been widely studied. The on-board-controller-based train control system is that the on-board controller can directly control the trackside equipment on the train line. In addition, if this system is used, the wayside facilities can be simplified, and as a result, the efficient and cost-effective train control system can be realized. To this end, we have developed the prototypes of the on-board controller and wayside object control units which control the point and crossing gate and performed the integrated operation simulation in a testbed. In this paper, before the field test of the on-board-controller-based train control system, we perform the preliminary field trial including the installation test, wireless access test, interface test with other on-board devices, and normal operation test.

An Alternative for Establishing a Logistics Cooperation System among Korea, China and Japan -Focused on Railferry system- (한중일의 물류협력체계 구축방안 -열차훼리를 중심으로-)

  • Cho, Sam-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.225-233
    • /
    • 2006
  • Creating more efficient and effective intermodal transportation service in Northeast range is a critical issue because of more increased trade volume & demand for intermodal service in the world market and geographical barriers associated with goods transportation, especially in Korea, China and Japan. This study examines the possibility of Rail-ferry in Northest area which can provide each countries mutual economical and logistical satisfaction.

  • PDF