• Title/Summary/Keyword: 열전 달

Search Result 3,735, Processing Time 0.025 seconds

Performance Comparison between Indirect Evaporative Coolers made of Aluminum, Plastic or Plastic/Paper (알루미늄, 플라스틱, 플라스틱/종이 재질의 간접 증발 소자 성능 비교)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8165-8175
    • /
    • 2015
  • In Korea, summer is hot and humid, and air-conditioners consume lots of electricity. In such case, simultaneous usage of indirect evaporative cooler may reduce the sensible heat and save the electricity. In this study, heat transfer and pressure drop characteristics of indirect evaporative cooler made of aluminum, plastic, plastic/paper are investigated both under dry or wet condition. Results show that indirect evaporation efficiencies of the plastic/paper sample (38.5% ~ 51.4%) are approximately the same as those of the aluminum sample (41.9% ~ 47.5%), and are larger than those of the plastic sample (29.0% ~ 37.4%). This suggests that the plastic/paper sample could be a good substitute to the aluminum sample. However, the pressure drops across the paper channel are 92% ~ 106% larger than those across the aluminum channel. The heat transfer coefficients of the paper channel under dry condition are 15% ~ 44% larger than those of the plastic channel. The increases are 185% ~ 203% for the aluminum channel. The pressure drops of the paper channel are 34% ~ 48% larger than those of the plastic channel and 93% ~ 106% larger than those of the aluminum channel. Rigorous heat transfer analysis reveals that, for the plastic sample, 30% ~ 37% of the wet channels remain dry, whereas all the channels are wet for plastic/paper sample. For aluminum sample, the ratio is 17% ~ 23%.

Experimental Study of Pool Boiling for Enhancing the Boiling Heat Transfer by Hydrophobic Dots on Silicon Surface (실리콘 표면 위에 소수성 점을 이용한 비등 열전달 증진에 관한 실험적 연구)

  • Jo, Hang-Jin;Kim, Hyung-Mo;Ahn, Ho-Seon;Kang, Soon-Ho;Kim, Joon-Won;Shin, Jeong-Seob;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.655-663
    • /
    • 2010
  • Wettability is important to enhance not only CHF but also nucleate boiling heat transfer, as shown by the results of different kinds of boiling experiments. In this regard, an excellent boiling performance (a high CHF and heat transfer performance) could be achieved in the case of pool boiling by some favorable surface modifications that can satisfy the optimized wettability condition. To determine the optimized boiling condition, we design special heaters to examine how two materials, which have different wettabilities (e.g., hydrophilic and hydrophobic materials), affect the boiling phenomena. The special heaters have hydrophobic dots on a hydrophilic surface. The contact angle of the hydrophobic surface is $120^{\circ}$ to water at the room temperature. The contact angle of the hydrophilic surface is $60^{\circ}$ at same conditions. Experiments involving micro hydrophobic dots and two types of milli hydrophobic dots are performed, and the results are compared with a reference surface.

Numerical Analysis for the Conjugate Heat Transfer of Skin Under Various Temperature Conditions of Contrast Therapy (냉온 자극의 다양한 온도경계조건들에 대한 피부 내 온도 분포의 수치해석)

  • Park, Da Ae;Oh, Han Nah;Jeon, Byoung Jin;Kim, Eun Jeong;Lee, Seung Deok;Choi, Hyoung Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.897-903
    • /
    • 2015
  • In this paper, the contrast therapy of skin was numerically investigated by solving the conjugate heat transfer problem. A finite volume method based on the SIMPLE algorithm was adopted to solve the axisymmetric incompressible Navier-Stokes equations, coupled with an energy equation. These equations are strongly coupled with the Pennes bio-heat equation in order to consider the effect of blood perfusion rate. We investigated the thermal response of skin at some selected depths for various input temperature profiles of a stimulator for contrast therapy. From the numerical simulations, the regions with cold/hot threshold temperatures were found for five input temperature profiles. It was shown that the temperature varies mildly for different input profiles as the depth increases, owing to the Pennes effect. The input temperatures for effective hot/cold stimulation of dermis layer were found to be $47^{\circ}C$ and $7^{\circ}C$, respectively. The present numerical results will be used for finding an optimal temperature profile of a stimulator for contrast therapy.

Power Optimization of Organic Rankine-cycle System with Low-Temperature Heat Source Using HFC-134a (저온 열원 HFC-134a 유기랭킨사이클의 출력 극대화)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Ra, Ho-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.53-60
    • /
    • 2011
  • In this study, an organic Rankine-cycle system using HFC-134a, which is a power cycle corresponding to a low-temperature heat source, such as that for geothermal power generation, was investigated from the view point of power optimization. In contrast to conventional approaches, the heat transfer and pressure drop characteristics of the working fluid within the heat exchangers were taken into account by using a discretized heat exchanger model. The inlet flow rates and temperatures of both the heat source and the heat sink were fixed. The total heat transfer area was fixed, whereas the heat-exchanger areas of the evaporator and the condenser were allocated to maximize the power output. The power was optimized on the basis of three design parameters. The optimal combination of parameters that can maximize power output was determined on the basis of the results of the study. The results also indicate that the evaporation process has to be optimized to increase the power output.

Channel Structure and Header Design of Printed Circuit Heat Exchanger by Applying Internal Fluid Pressure (유체 내압을 고려한 인쇄기판형 열교환기의 채널구조 및 헤더 설계)

  • Kim, Jungchul;Shin, Jeong Heon;Kim, Dong Ho;Choi, Jun Seok;Yoon, Seok Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.767-773
    • /
    • 2017
  • Printed Circuit Heat Exchanger (PCHE) has an advantage for exchanging thermal energy between high-pressure and high-temperature fluids because its core is made by diffusion bonding method of accumulated metal thin-plates which are engraved of flow channel. Moreover, because it is possible that the flow channel can be micro-size hydraulic diameter, the heat transfer area per unit volume can be made larger than traditional heat exchanger. Therefore, PCHE can have higher efficiency of heat transfer. The smaller channel size can make the larger heat transfer area per unit volume. But if high pressure fluid flows inside the channel, the channel wall can be deformed, the structure and shape of flow channel and header have to be designed appropriately. In this study, the design methodology of PCHE channel in high pressure environment based on pressure vessel codes was investigated. And this methodology was validated by computational analysis.

Experimental Study on Characteristics of Steam Condensation in a Sub-cooled Water Pool (과냉각수조에서 증기응축 특성에 관한 실험적 연구)

  • Kim, Hwan-Yeol;Cho, Seok;Song, Chul-Hwa;Chung, Moon-Ki;Choi, Sang-Min
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.298-308
    • /
    • 1999
  • Experimental study on characteristics of direct contact condensation of steam discharged into a sub-cooled water pool has been performed using five different sizes of horizontal nozzle over a wide range of steam mass fluxes and pool temperatures. Steam condensation phenomena have been observed visually and by taking pictures of steam jets using a high speed video camera. Two different steam jet shapes such as ellipsoidal shape and conical shape were typically observed for a stable steam jet, depending on the steam mass flux and pool temperature. The steam jet expansion ratio and the steam jet length as well as the condensation heat transfer coefficients were determined. The effect of steam mass flux, pool temperature, and nozzle diameter on these parameters were also discussed. Empirical correlations for the steam jet lengths and the condensation heat transfer coefficients as a function of steam mass flux and condensation driving potential were established. The axial and radial temperature distributions in steam jet and in surrounding water were measured. The effect of steam mass flux, pool temperature, and nozzle diameter were also discussed. The condensation regime map, which consists of six regimes such as chugging, transient chugging, condensation oscillation, stable condensation, bubble condensation oscillation, and intermittent oscillation condensation, were established. In addition, the dynamic pressures at the pool wall were measured. The close relation of dynamic pressure and steam condensation mode, which is also dependent on steam mass flux and pool temperature, was found.

  • PDF

Studies on Cure Kinetics and Thermal Stability of Epoxy/Nylon 6 Blend (에폭시/나일론6 블랜드의 경화 동력학 및 열안정성에 관한 연구)

  • Kim, Dong-Kyu;Kim, Kwan-Woo;Han, Woong;Kwac, Lee-Ku;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.538-542
    • /
    • 2015
  • In this work, effects of the blend composition composed of 0, 10, 20, 30 and 40 wt% of nylon 6 to epoxy (diglycidylether of bisphenol-A, DGEBA) resin were investigated in terms of cure kinetics and thermal stability by differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). As the content of the nylon 6 increased, the maximum exothermic temperature ($T_{max}$) and the value of cure activation energy ($E_a$) decreased. The maximum exothermic temperature of the blending samples decreased with increasing in nylon 6 content, resulting in the decrease in curing activation energy of them due to the rapid curing reaction with epoxy resin in this system. From TGA analysis results of the DGEBA/nylon 6, the thermal stability based on the thermal stability index ($A^*{\cdot}K^*$) and integral procedure decomposition temperature (IPDT) increased with increase in the nylon 6 content. This was because of the combination of DGEBA and nylon 6 having good heat resistance, resulting in improving thermal stability of the DGEBA/nylon 6.

Evaluation of Thermal Processes for Canned Marine Products (3) Canned Minced Hen-Clams in Brine and Canned Smoked Baby-Clams in Oil (수산물 통조림의 살균조건에 관한 연구 (3) 개량조개 세절 보일드 통조림 및 바지락 훈제 기름담금 통조림)

  • PARK Yeung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.4
    • /
    • pp.306-312
    • /
    • 1984
  • In the present study, in succession to the previous reports, the sterilizing values ($F_0$) of the thermal processes for the canned minced hen-clams in brine and the canned smoked baby-clams in oil were determined ana discussed. The heat penetration tests were carried out three times with three cans at a time for each canned product. The thermocouple was setted on the can so as the tip of the applicaotor fixed on the position a little below the geometrical center of the can. The test cans were placed in the middle layer of the crate in which the same canned products were loaded with, and test cans were arranged to the front, the middle and the rear in the retort. The heat penetration curve obtained for the canned minced hen-clams in brine showed a broken logarithmic heating curve, while that of the canned smoked baby-clams in oil showed a simple logarithmic heating curve. The calculated $F_0$ values for the canned minced hen-clams in brine were 47.79 for No. 2 can, 52.99 for Ne. 7 can. and 45.21 for No. 2 tuna can, respectively. And the $F_0$ value for th canned baby-clams in oil packed into No. 3B square can was 14.12. Additionally, the nomographs represent the relationship between $F_0$ vlaues and B values (process time including $42\%$ of come-up time) for the each canned product were constructed.

  • PDF

Comparison Of CATHARE2 And RELAP5/MOD3 Predictions On The BETHSY 6.2% TC Small-Break Loss-Of-Coolant Experiment (CATHARE2와 RELAP5/MOD3를 이용한 BETHSY 6.2 TC 소형 냉각재상실사고 실험결과의 해석)

  • Chung, Young-Jong;Jeong, Jae-Jun;Chang, Won-Pyo;Kim, Dong-Su
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.126-139
    • /
    • 1994
  • Best-estimate thermal-hydraulic codes, CATHARE2 V1.2 and RELAP5/MOD3, hate been assessed against the BETHSY 6.2 tc six-inch cold leg break loss-of-coolant accident (LOCA) test. Main objective is to analyze the overall capabilities of the two codes on physical phenomena of concern during the small break LOCA i.e. two-phase critical flow, depressurization, core water level de-pression, loop seal clearing, liquid holdup, etc. The calculation results show that the too codes predict well both in the occurrences and trends of major two-phase flow phenomena observed. Especially, the CATHARE2 calculations show better agreements with the experimental data. However, the two codes, in common, show some deviations in the predictions of loop seal clearing, collapsed core water level after the loop seal clearing, and accumulator injection behaviors. The discrepancies found from the comprision with the experimental data are larger in the RELAP5 results than in the CATHARE2. To analyze the deviations of the two code predictions in detail, several sensitivity calculations have been performed. In addition to the change of two-phase discharge coefficients for the break junction, fine nodalization and some corrections of the interphase drag term are made. For CATHARE2, the change of interphase drag force improves the mass distribution in the primary side. And the prediction of SG pressure is improved by the modification of boundary conditions. For RELAP5, any single input change doesn't improve the whole result and it is found that the interphase drag model has still large uncertainties.

  • PDF

Evaluation for Mechanical Properties of High Strength Concrete at High Temperature by Stressed Test and Unstressed Test (설계하중 사전재하 및 비재하방식에 의한 고강도콘크리트의 고온특성 평가)

  • Kim, Gyu-Yong;Kim, Young-Sun;Lee, Tae-Gyu;Park, Chan-Kyu;Lee, Seung-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.583-592
    • /
    • 2008
  • Recently, the effects of high temperature on compressive strength, elastic modulus and strain at peak stress of high strength concrete were experimentally investigated. The present study is aimed to study the effect of elevated temperatures ranging from 20 to 700 on the material mechanical properties of high strength concrete of 40, 60, 80 MPa grade. In this study, the types of test were the stressed test and stressed residual test that the specimens are subjected to a 25% of ultimate compressive strength at room temperature and sustained during heating and when target temperature is reached, the specimens are loaded to failure. And another specimens are loaded to failure after 24 hour cooling time. Tests were conducted at various temperatures ($20{\sim}700^{\circ}C$) for concretes made with W/B ratios 46%, 32% and 25%. Test results showed that the relative values of compressive strength and elastic modulus decreased with increasing compressive strength grade of specimen and the axial strain at peak stress were influenced by the load before heating. Thermal strain of concrete at high temperature was affected by the preload level as well as the compressive strength. Finally, model equation for compressive strength and elastic modulus of heated high strength concrete proposed by result of this study.