DOI QR코드

DOI QR Code

Experimental Study of Pool Boiling for Enhancing the Boiling Heat Transfer by Hydrophobic Dots on Silicon Surface

실리콘 표면 위에 소수성 점을 이용한 비등 열전달 증진에 관한 실험적 연구

  • Jo, Hang-Jin (Dept. of Mechanical Engineering, POSTECH, Two Phase Flow Laboratory) ;
  • Kim, Hyung-Mo (Dept. of Mechanical Engineering, POSTECH, MEMs & Nano Technology Laboratory) ;
  • Ahn, Ho-Seon (Dept. of Mechanical Engineering, POSTECH, Two Phase Flow Laboratory) ;
  • Kang, Soon-Ho (Dept. of Mechanical Engineering, POSTECH, Two Phase Flow Laboratory) ;
  • Kim, Joon-Won (Dept. of Mechanical Engineering, POSTECH, MEMs & Nano Technology Laboratory) ;
  • Shin, Jeong-Seob (LG electronics, AC R&D Laboratory) ;
  • Kim, Moo-Hwan (Dept. of Mechanical Engineering, POSTECH, Two Phase Flow Laboratory)
  • 조항진 (포항공과대학교 기계공학부 이상유동연구실) ;
  • 김형모 (포항공과대학교 기계공학부 멤스 나노 기술 연구실) ;
  • 안호선 (포항공과대학교 기계공학부 이상유동연구실) ;
  • 강순호 (포항공과대학교 기계공학부 이상유동연구실) ;
  • 김준원 (포항공과대학교 기계공학부 멤스 나노 기술 연구실) ;
  • 신정섭 (LG 전자 AC 연구소) ;
  • 김무환 (포항공과대학교 기계공학부 이상유동연구실)
  • Received : 2009.08.05
  • Accepted : 2010.03.29
  • Published : 2010.06.01

Abstract

Wettability is important to enhance not only CHF but also nucleate boiling heat transfer, as shown by the results of different kinds of boiling experiments. In this regard, an excellent boiling performance (a high CHF and heat transfer performance) could be achieved in the case of pool boiling by some favorable surface modifications that can satisfy the optimized wettability condition. To determine the optimized boiling condition, we design special heaters to examine how two materials, which have different wettabilities (e.g., hydrophilic and hydrophobic materials), affect the boiling phenomena. The special heaters have hydrophobic dots on a hydrophilic surface. The contact angle of the hydrophobic surface is $120^{\circ}$ to water at the room temperature. The contact angle of the hydrophilic surface is $60^{\circ}$ at same conditions. Experiments involving micro hydrophobic dots and two types of milli hydrophobic dots are performed, and the results are compared with a reference surface.

표면 젖음성은 비등 상황에서 주요 인자인 임계열유속과 비등열전달 모두에 영향을 미치는 중요한 표면인자이다. 지금까지 표면 젖음성을 이용한 비등 조건 개선에 대한 연구는 한가지 물질의 표면 구조를 개질하는데 국한되었다. 본 논문에서는 최적화된 비등 조건을 이룰 수 있는 표면 젖음성을 찾기 위한 연구의 일환으로 소수성 물질과 친수성 물질의 혼합을 시도하였다. 가열 표면은 표면 접촉각이 $60^{\circ}$인 친수성 표면위에 표면 접촉각 $120^{\circ}$의 소수성 물질 점이 생기도록 개질되었다. 개질된 소수성 점은 마이크로 단위와 밀리단위로 그 크기를 변화시켜 가며 풀 비등 성능을 평가하였다.

Keywords

References

  1. You, S.M. and Kim, J.H., 2003, "Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer," Applied Physics Letters, Vol. 83, pp. 3374-3376. https://doi.org/10.1063/1.1619206
  2. Bang, I.C. and Chang, S.H., 2005, "Boiling Heat Transfer Performance and Phenomena of Al2O3-Water Nano-Fluids from a Plain Surface in a Pool," Int. J. Heat and Mass Transfer, Vol. 48, pp. 2407-2419. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.047
  3. Kim, H.D. and Kim, M.H., 2007, "Experimental Study on the Role of Nanoparticle Deposition in Pool Boiling CHF Enhancement Using Nanofluids," Trans. of the KSME(B), pp. 1018-1023.
  4. Kim, S.J., Bang, I.C., Buongiorno, J. and Hu, L.W., 2006, "Effects of Nanoparticle Deposition on Surface Wettability Influencing Boiling Heat Transfer in Nanofluids," Applied Physics Letters, Vol. 89. 153107. https://doi.org/10.1063/1.2360892
  5. Kim, H.D., Kim, J. and Kim, M.H., 2006, "Effect of Nanoparticles on CHF Enhancement in Pool Boiling of Nano-Fluids," Int. J. Heat and Mass Transfer, Vol. 49, pp. 5070-5074. https://doi.org/10.1016/j.ijheatmasstransfer.2006.07.019
  6. Kim, H.D. and Kim, M.H., 2007, "Effect of Nanoparticle Deposition on Capillary Wicking that Influences the Critical Heat Flux in Nanofluids," Applied physics letters, Vol. 91, 014104. https://doi.org/10.1063/1.2754644
  7. Berenson, P.J., 1962, "Experiments on Pool-Boiling Heat Transfer," Int. J. Heat and Mass Transfer, Vol. 5, pp. 985-999. https://doi.org/10.1016/0017-9310(62)90079-0
  8. Messina, A.D. and Jr. Park, E.L., 1981, "Effects of Precise Arrays of Pits on Nucleate Boiling," Int. J. Heat and Mass Transfer, Vol. 24, pp. 141-145. https://doi.org/10.1016/0017-9310(81)90102-2
  9. Anderson, T.M. and Mudawar, I., 1989, "Microelectronic Cooling by Enhanced Pool Boiling of a Dielectric Fluorocarbon Liquid," J. Heat Transfer, Vol. 111, pp.752-759. https://doi.org/10.1115/1.3250747
  10. Fong, R.W.L., McRae, G.A., Coleman, C.E., Nitheanandan, T. and Sanderson, D.B., 2001, "Correleation Between the Critical Heat Flux and the Fractal Surface Roughness of Zirconium Alloy Tubes," Enhanced Heat Transfer, Vol. 8, pp. 137-146. https://doi.org/10.1615/JEnhHeatTransf.v8.i2.60
  11. Ferjancic, K. and Golobic, I., 2002, "Surface Effects on Pool Boiling CHF," Experimental Thermal and Fluid Science, Vol. 25, pp. 565-571. https://doi.org/10.1016/S0894-1777(01)00104-2
  12. Liter, S.G. and Kaviany, M., 2001, "Pool-Boiling CHF Enhancement by Modulated Porous-Layer Coating: Theory and Experiment," Int. J. Heat and Mass Transfer, Vol. 44, pp. 4287-4311. https://doi.org/10.1016/S0017-9310(01)00084-9
  13. Kim, J.H., Rainey, K.N., You, S.M. and Park, J.Y., 2003, "Mechanism of Nucleate Boiling Heat Transfer Enhancement from Microporous Surfaces in Saturated FC-72," J. Heat Transfer, Vol. 124, pp. 500-506. https://doi.org/10.1115/1.1469548
  14. Rainey, D.B., You, S.M. and Lee, S., 2003, "Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling Heat Transfer from Microporous Surfaces in FC-72," J. Heat Transfer, Vol. 125, pp. 75-83. https://doi.org/10.1115/1.1527890
  15. Hahne, E. and Diesselhorst, D., 1978, "Hydrodynamic and Surface Effects on the Peak Heat Flux in Pool Boiling," Proceedings of the 6th International Heat Transfer Conference, Vol. 1, pp. 209-214.
  16. Chowdhury, S.K.R. and Winterton, R.H., 1985, "Surface Effects in Pool Boiling," Int. J. Heat and Mass Transfer, Vol. 28, pp. 1881-1889. https://doi.org/10.1016/0017-9310(85)90210-8
  17. Liaw, S.P. and Dhir, V.K., 1986, "Effect of Surface Wettability on Transition Boiling Heat Transfer from a Vertical Surface," Proceedings of the 8th International Heat Transfer Conference, Vol. 4, pp. 2031-2036.
  18. Sefiane, K., Benielli, D. and Steinchen, A., 1998, "A New Mechanism for Pool Boiling Crisis, Recoil Instability and Contact Angle Influence," Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 142, pp. 361-373. https://doi.org/10.1016/S0927-7757(98)00614-1
  19. Kandlikar, S.G., 2001, "A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation," J. Heat Transfer, Vol. 123, pp. 1071-10796. https://doi.org/10.1115/1.1409265
  20. Hibiki, T. and Ishii, M., 2003, "Active Nucleation Site Density in Boiling Systems," Int. J. Heat and Mass Transfer, Vol. 46, pp. 2587-2601. https://doi.org/10.1016/S0017-9310(03)00031-0
  21. Takata, Y., Hidaka, S. and Kohno, M., 2006, "Enhanced Nucleate Boiling by Superhydrophobic Coating with Checkered and Spotted Patterns," International Conference on Boiling Heat Transfer.
  22. Coleman, H. W. and Steele, W. G.., 1999, "Experimentation and Uncertainty Analysis for Enginerrs 2nd Edition," John Wiley & Sons, Inc.
  23. Kim, S., Kim, H., Kim, H.D., Ahn, H.S., Kim, M.H., Kim, J., and Park, G.C., 2008, "Experimental Investigation of Critical Heat Flux Enhancement by Micro/Nanoscale Surface Modification in Pool Boiling," Proceedings of the 6th International ASME Conference on Nanochannels, Microchannels and Minichannels.
  24. Zhang, L. and Shoji, M., 2003, "Nucleation Site Interaction in Pool Boiling Artificial Surface," Int. J. Heat and Mass Transfer, Vol. 26, pp. 513-522.