• Title/Summary/Keyword: 열전 달

Search Result 3,737, Processing Time 0.024 seconds

Fundamental Study on the Strength and Heat Transferring Charcteristic of Cement Composite with Waste CNT (폐CNT를 혼입한 시멘트 복합체의 강도 및 열전달 특성에 대한 기초적 연구)

  • Koo, Hounchul;Kim, Woon-Hak;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.66-73
    • /
    • 2022
  • The purpose of this study was to develop self-heating concrete by utilizing the conduction resistance of concrete in order to reduce the risk of occurrence of black ice in the concrete pavement in winter and to prevent damage caused by freez-thawing effect. For this purpose, it was attempted to evaluate the strength and temperature exothermic characteristics using powder and liquid waste CNTs and a waste cathode agent as a conduction promotion. It was analyzed that liquid waste CNT had an effective dispersion degree in the mortar and a small decrease in strength occurred. In addition, DC 24 V was supplied by applying steel mesh, copper foil and copper wire to the mortar as electrodes, and the temperature change characteristics according to the mixing ratio of spent CNTs, anodes and carbon fibers were evaluated. In addition, by evaluating the temperature characteristics according to the electrode spacing from the selected optimal mixture, it was confirmed that it had sufficient heating characteristics up to an electrode spacing of 100 mm up to AC 50 V.

Diversification of 4,5-disubstituted Pyrrolo[3,2-d]-pyrimidines by Microwave Assisted Metal Catalyzed Reaction (마이크로파와 금속 촉매를 이용한 Pyrrolo[3,2-d]-pyrimidine 유도체의 다양화)

  • Jeong Seob, Byeon;Eul Kgun, Yum;Yeong-Joon, Kim
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.6
    • /
    • pp.442-450
    • /
    • 2022
  • Diverse pyrrolo[3,2-d]pyrimidines that are expected to exhibit bioactivity were synthesized through O-arylation and Suzuki coupling reactions. Microwave-assisted O-arylation was successfully performed using a Cu metal catalyst, so that 4 position of pyrrolo[3,2-d]pyrimidine could be substituted with phenol group. In addition, 4-aryl substituted pyrrolo[3,2-d]pyrimidines were synthesized with good to excellent yields by microwave-assisted Suzuki coupling reaction using a Pd metal catalyst. By using microwaves as reaction conditions for diversification of derivatives, it was possible to dramatically overcome the disadvantages of traditional heat reactions of long reaction times and heat transfer efficiency problems. The result of this study can be used to be diversify pyrrolo[3,2-d]pyrimidine derivatives, which are expected to play an important role in the drug discovery research.

Thermochemical Modeling Factors in Roasting Pre-treatment using a Rotary Kiln for Efficient Vanadium Recovery (바나듐의 고효율 회수를 위한 배소 전처리용 Rotary kiln 내 열화학적 모델인자)

  • Lee, Sang-hun;Chung, Kyeong Woo
    • Resources Recycling
    • /
    • v.31 no.2
    • /
    • pp.33-39
    • /
    • 2022
  • In this study, analytical thermochemical modeling factors that contribute to maintaining a specific temperature range during vanadium roasting as a pretreatment using a rotary kiln are investigated. The model-related mechanisms include thermochemical reaction rates, heat balance, and heat transfer, through which the resultant temperature can be estimated intuitively. Ultimately, by optimizing these parameters, the ideal roasting temperature in the kiln is ≈1000 ℃ (or ≈1273 K) for long-term operation. Therefore, the heat generated from hydrocarbon (natural gas) fuel combustion and ore oxidation reactions, as well as the radiant heat transferred to ores, are assessed. In addition, thermochemical methods for relieving the temperature gradient in order to maintain the optimum temperature range of the rotary kiln are suggested.

A study on thermal and electrical properties of molybdenum sputtered clothing materials (몰리브덴 스퍼터링 처리 의류소재의 열적 특성과 전기적 특성에 관한 연구)

  • Han, Hye Ree
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.1
    • /
    • pp.88-101
    • /
    • 2022
  • Molybdenum is used in electrical contacts, industrial motors, and transportation materials due to its remarkable ability to resist heat and corrosion. It is also used to flame coat other metals. This study investigated, the thermal characteristics of the molybdenum sputtered material, such as electrical conductivity, and stealth effects on infrared thermal imaging cameras. To this end, molybdenum sputtered samples were prepared by varying the density of the base sample and the type of base materials used. Thereafter, the produced samples were evaluated for their surface state, electrical conductivity, electromagnetic field characteristics, thermal characteristics, stealth effect on infrared thermal imaging cameras, and moisture characteristics. As a result of infrared thermal imaging, the molybdenum layer was directed towards the outside air, and when the sample was a film, it demonstrated a greater stealth effect than the fabric. When the molybdenum layer was directed to the outside air, all of the molybdenum sputtering-treated samples exhibited a lower surface temperature than the "untreated sample." In addition, as a result of confirming electrical properties following the molybdenum sputtering treatment, it was determined that the film exhibited better electrical conductivity than the fabric. All samples that were subjected to molybdenum sputtering exhibited significantly reduced electromagnetic and IR transmission. As a result, the stealth effect on infrared thermal imaging cameras is considered to be a better way of interpreting heat transfer than infrared transmission. These results are expected to have future applications in high-performance smartwear, military uniforms, and medical wear.

Measurement of Heat Transfer Coefficient of Magnesium Alloy and Temperature Change of Roll using Heat Transfer Solidification Analysis Method (전열응고해석법을 이용한 마그네슘합금의 열전달계수 및 롤의 온도변화 측정)

  • Han, Chang-Suk;Lee, Chan-Woo
    • Korean Journal of Materials Research
    • /
    • v.32 no.9
    • /
    • pp.391-395
    • /
    • 2022
  • Research is being actively conducted on the continuous thin plate casting method, which is used to manufacture magnesium alloy plate for plastic processing. This study applied a heat transfer solidification analysis method to the melt drag process. The heat transfer coefficient between the molten magnesium alloy metal and the roll in the thin plate manufacturing process using the melt drag method has not been clearly established until now, and the results were used to determine the temperature change. The estimated heat transfer coefficient for a roll speed of 30 m/min was 1.33 × 105 W/m2·K, which was very large compared to the heat transfer coefficient used in the solidification analysis of general aluminum castings. The heat transfer coefficient between the molten metal and the roll estimated in the range of the roll speed of 5 to 90 m/min was 1.42 × 105 to 8.95 × 104 W/m2·K. The cooling rate was calculated using a method based on the results of deriving the temperature change of the molten metal and the roll, using the estimated heat transfer coefficient. The DAS was estimated from the relationship between the cooling rate and DAS, and compared with the experimental value. When the magnesium alloy is manufactured by the melt drag method, the cooling rate of the thin plate is in the range of about 1.4 × 103 to 1.0 × 104 K/s.

Effect of Thermal Contact Resistence on the Heat Transfer Characteristics of Air Flow around the Finned Micro-Channel Tube for MF Evaporator (Micro-Channel형 열교환기에 부착된 핀의 열접촉저항이 열전달 특성에 미치는 영향)

  • Park, Yong-Seok;Sung, Hong-Seok;Sung, Dong-Min;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.121-126
    • /
    • 2021
  • In this study, the effect of thermal contact resistance between pin-channel tubes on the heat transfer characteristics was analytically examined around the channel tubes with the pins attached to two consecutive arranged channel pipes. The numerical results showed that the heat transfer coefficient decreased geometrically as the thermal contact resistance increased, and the corresponding temperature change on the contact surface increased as the thermal contact resistance increased. The thinner the pin, the more pronounced the geometric drop in the heat transfer coefficient. It was confirmed that the higher the height of the pin, the higher was the heat transfer coefficient, however, the greater the size of the thermal contact resistance, the smaller was the heat transfer coefficient. It was found that the temperature change in the inner wall of the channel tube did not significantly affect the heat transfer characteristics owing to the thermal contact resistance. Furthermore, the velocity of air at the entrance of the channel tube was proportional to the heat transfer coefficient due to a decrease in the convective heat resistance corresponding to an increase in the flow rate.

Condensation Heat Transfer of R32 and R454B Inside a Microfin Tube as an Alternative Refrigerant to R410A (R410A 대체냉매 R32와 R454B의 미세핀 관내 응축 열전달)

  • KARAGEORGIS, ANDREAS;HINOPOULOS, GEORGE;KIM, MAN-HOE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.413-418
    • /
    • 2022
  • This paper presents two-phase condensation heat transfer and pressure drop characteristics of R32 and R454B as an alternative refrigerant to R410A in a 9.52 mm OD microfin tube. The test facility has a straight, horizontal test section with an active length of 2.0 m and is cooled by cold water circulated in a surrounding annular space. The heat transfer coefficients of the annular space were obtained using the modified Wilson plot method. Average condensation heat transfer coefficient and pressure drop data are presented at the condensation temperature of 35℃ for the range of mass flux 100-400 kg/m2s. The average condensation heat transfer coefficients of R32 refrigerant are 35-47% higher than R410A at the mass flux considered in the study, while R454B data are similar to R410A. The average pressure drop of R32 and R454B are much higher than R410A and they are 134-224% and 151-215% of R410A, respectively. R32 and R454B have relatively low GWP and high heat transfer characteristics, so they are suitable as alternatives for R410A.

Investigation of Gas Evolution in Shell Cores during Casting Processes of Aluminum Alloys (알루미늄 합금 주조공정의 쉘 코아 가스 발생 전산모사 연구)

  • In-Sung Cho;Jeong-Ho Nam;Hee-Soo Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.4
    • /
    • pp.187-193
    • /
    • 2023
  • Shell core making is an excellent process in terms of formability and desanding, but when the molten aluminum comes into con- tact with the shell core, gas generation by pyrolysis of the resin is inevitable. In addition, when the ventilation is inadequate, pores will remain inside the casting, which can directly lead to defects of the casting. While studies on the gas generation behavior of shell core making have been reported, the modeling of gas generation has not been extensively investigated. We will develop a gas evolution analysis method that considers the relationship between temperature and gas quantity for the core to be developed. We then use the developed method to analyze the flow and solidification behavior of metal molten metal during core mold design and low-pressure casting of cylinder head products, and predict the occurrence of casting defects to derive a casting method that min- imizes the occurrence of defects.

Development of an Application Program Code for Dryer Tower of Heat Transfer Analysis in Hydrogen Purification System (수소 정제 시스템의 건조 타워 열전달 해석을 위한 응용 프로그램 코드 개발)

  • SOOIN KWON;BYUNGSEOK JIN;GYUNGMIN CHOI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.4
    • /
    • pp.334-341
    • /
    • 2023
  • The purity of hydrogen finally purified in the hydrogen purification process system is greatly influenced by the uniformity of the purification temperature of the dry tower. A in-house code that can be easily used by field designers has been developed to predict the capacity of the appropriate heat source and the time to reach the temperature of the dry tower. A code was developed to predict unsteady heat transfer using Visual Basic for Applications. To verify the developed code, a grid independence test was performed, and finally, calculations were performed for two cases. In the first case, the time for the temperature of the heater jacket to reach 360℃ was about 1,400 seconds when the supply heat source was 1,000 W. And in the second case, the time for the temperature of the heater jacket to reach 360℃ was about 710 seconds when the supply heat source was 2,000 W. It was confirmed that the developed code well describes the actual test data of the regeneration process of adsorption and desorption, and it is judged that the code developed in the design process of various capacity systems will be effectively applied to the heat capacity calculation in the future.

The Effects of Nozzle Shapes and Pressures on Boundary Layer Flashback of Hydrogen-Air Combustor (수소 전소용 연소 노즐 형상과 연소실 압력이 경계층 역화에 미치는 영향)

  • WON JUNE LEE;JEONGJAE HWANG;HAN SEOK KIM;KYUNGWOOK MIN;MIN KUK KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.776-785
    • /
    • 2022
  • Hydrogen combustion in modern gas-turbine engine is the cutting edge technology as carbon-free energy conversion system. Flashback of hydrogen flame, however, is inevitable and critical specially for premixed hydrogen combustion. Therefore, this experimental investigation is conducted to understand flashback phenomenon in premixed hydrogen combustion. In order to investigate flashback characteristics in premixed hydrogen (H2)/air flame, we focus on pressure conditions and nozzle shapes. In general, quenching distance reduces as pressure of combustion chamber increases, causing flashback from boundary layer near wall. The flashback regime for reference and modified candidate configurations can broadly appear with increasing combustion chamber pressure. The later one can improve flashback-resist by compensating flow velocity at wall. Also, improved wall flow velocity profile of suggested contraction nozzle prevents entire flashback but causes local flashback at nozzle exit.