• 제목/요약/키워드: 열전재료

검색결과 817건 처리시간 0.029초

합금원소 첨가에 따른 Ag 피복 Bi-2223 초전도 선재의 열전도도 측정 및 특성평가 (The Effects of Alloying-Element Additions to Ag Sheath on Thermal Conductivity and Properties of Bi-2223 Superconductor Tapes)

  • 주진호;장석헌;김정호;임준형;김규태;지봉기
    • 한국전기전자재료학회논문지
    • /
    • 제16권7호
    • /
    • pp.627-633
    • /
    • 2003
  • The effects of alloying-element additions to Ag sheath on thermal conductivity and mechanical properties of Bi-2223 superconductor tapes have been evaluated. In order to evaluate the effects of sheath alloys and their configuration on the properties of tape, various combinations of Ag and Ag alloys were selected as the inner and outer sheath. Thermal conductivity of the tapes was evaluated by using thermal integral method at 10 ∼120 K. It was observed that the addition of Mg, Sb, and Au to Ag sheath significantly decreased the thermal conductivity at low temperature probably due to the alloying effect. Specifically, the thermal conductivity of AgMg, AgSb, and AgAu at 40 K were 411.4, 142.3, and 109.7 W/(m·K), respectly, which is about 2∼9 times lower than that of Ag (1004.6 W/(m·K)). In addition, the thermal conductivity of alloy-sheathed tape was significantly dependent on their thermal conductivities of constituent sheath materials. The mechanical properties of alloy-sheathed tapes were also evaluated. Yield strength and tensile strength were improved but workability decreased for alloy-sheathed tapes.

경량화 열전도성 플라스틱 Heat Sink기반 20 W급 LED Module의 열 특성: 다이캐스팅합금 (ADC-12)과 비교 연구 (Thermal Characteristics of 20 W LED Module on Light Thermal Conductive Plastic Heat Sink: Comparison with that on Aluminum Die Casting Alloy (ADC-12))

  • 여정규;허인성;이승민;최희락;유영문
    • 한국전기전자재료학회논문지
    • /
    • 제29권6호
    • /
    • pp.380-385
    • /
    • 2016
  • Thermal characteristics of 20 W LED module on light thermal conductive plastic (TCP) heat sink were investigated in comparison with that on aluminum die casting alloy (ADC-12). Thermal simulations of the heat sinks were conducted by using flow simulation of SolidWorks with the following input parameters: density is 1.70 and $2.82kg/m^2$, thermal conductivity is 20 and $92W/(m{\cdot}K)$ for TCP and ADC-12, respectively. The simulated and measured temperatures of the LED modules on TCP heat sink were consistent with its measured temperature, which was $3^{\circ}C$ higher that on ADC-12. The fabricated LED module on TCP heat sink with a weight of 120.5 g was 30% lighter in weight than that of the ADC-12 reference with 171.0 g.

$Sn_zCo_3FeSb_{12}$의 열전특성 (Thermoelectric Properties of $Sn_zCo_3FeSb_{12}$)

  • 이재기;윤석연;정재용;이정일;어순철;김일호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.126-127
    • /
    • 2007
  • Sn-filled and Fe-doped $CoSb_3$ skutterudites were synthesized by encapsulated induction melting. Single ${\delta}$-phase was successfully obtained by subsequent annealing and confirmed by X-ray diffraction analysis. Temperature dependences of Seebeck coefficient, electrical resistivity and thermal conductivity were examined from 300 K to 700 K. The positive Seebeck coefficient confirmed the p-type conduction. Electrical resistivity increased with increasing temperature, which shows that the $Sn_zCo_3FeSb_{12}$ skutterudite is highly degenerate. Thermal conductivity was reduced by Sn-filling because the filler atoms acted as phonon scattering centers in the skutterudite lattice. Thermoelectric figure of merit was enhanced by Sn filling and its optimum filling content was considered to be z=0.3 in the $Sn_zCo_3FeSb_{12}$ system.

  • PDF

기계적 합금화법으로 제조된 나노 미세 구조 FexCo4-xSb12의 열전 특성 및 전자 이동 특성 (Thermoelectric and Electronic Transport Properties of Nano-structured FexCo4-xSb12 Prepared by Mechanical Alloying Process)

  • 김일호;권준철;어순철
    • 한국재료학회지
    • /
    • 제16권10호
    • /
    • pp.647-651
    • /
    • 2006
  • A new class of compounds in the form of skutterudite structure, Fe doped $CoSb_3$ with a nominal composition of $Fe_xCo_{4-x}Sb_{12}$ ($0{\leq}x{\leq}2.5$), were synthesized by mechanical alloying of elemental powders followed by vacuum hot pressing. Nanostructured, single-phase skutterudites were successfully produced by vacuum hot pressing using as-milled powders without subsequent heat-treatments for the compositions of $x{\leq}1.5$. However, second phase was found to form in case of $x{\geq}2$, suggesting the solubility limit of Fe with Co in this system. Thermoelectric properties including thermal conductivity from 300 to 600 K were measured and discussed. Lattice thermal conductivity was greatly reduced by introducing a dopant up to x=1.5 as well as by increasing phonon scattering in nanostructured skutterudite, leading to enhancement in the thermoelectric figure of merit. The maximum figure of merit was found to be 0.32 at 600 K in the composition of $Fe_xCo_{4-x}Sb_{12}$.

나노 실리카의 분무건조를 이용한 중공구 입자 제조와 실리카중공구의 열전달 특성 (Preparation of Hollow Silica by Spray Drying of Nano Silica Particles and Its Heat Transfer Property)

  • 윤찬기;임형미;차수진;김대성;이승호
    • 한국재료학회지
    • /
    • 제22권10호
    • /
    • pp.531-538
    • /
    • 2012
  • Hollow silica spheres were prepared by spray drying of precursor solution of colloidal silica. The precursor solution is composed of 10-20 nm colloidal silica dispersed in a water or ethanol-water mixture solvent with additives of tris hydroxymethyl aminomethane. The effect of pH and concentrations of the precursor and additives on the formation of hollow sphere particles was studied. The spray drying process parameters of the precursor feeding rate, inlet temperature, and gas flow rate are controlled to produce the hollow spherical silica. The mixed solvent of ethanol and water was preferred because it improved the hollowness of the spheres better than plain water did. It was possible to obtain hollow silica from high concentration of 14.3 wt% silica precursor with pH 3. The thermal conductivity and total solar reflectivity of the hollow silica sample was measured and compared with those values of other commercial insulating fillers of glass beads and $TiO_2$ for applications of insulating paint, in which the glass beads are representative of the low thermal conductive fillers and the $TiO_2$ is representative of infrared reflective fillers. The thermal conductivity of hollow silica was comparable to that of the glass beads and the total solar reflectivity was higher than that of $TiO_2$.

고압 다이캐스팅용 알루미늄 합금의 열전도성 및 주조성에 미치는 첨가원소의 영향 (Effect of Alloying Elements on the Thermal Conductivity and Casting Characteristics of Aluminum Alloys in High Pressure Die Casting)

  • 김철우;김영찬;김정한;조재익;오민석
    • 대한금속재료학회지
    • /
    • 제56권11호
    • /
    • pp.805-812
    • /
    • 2018
  • High pressure die casting is one of the precision casting methods. It is highly productivity and suitable for manufacturing components with complex shapes and accurate dimensions. Recently, there has been increasing demand for efficient heat dissipation components, to control the heat generated by devices, which directly affects the efficiency and life of the product. Die cast aluminum alloys with high thermal conductivity are especially needed for this application. In this study, the influence of elements added to the die cast aluminum alloy on its thermal conductivity was evaluated. The results showed that Mn remarkably deteriorated the thermal conductivity of the aluminum alloy. When Cu content was increased, the tensile strength of cast aluminum alloy increased, showing 1 wt% of Cu ensured the minimum mechanical properties of the cast aluminum. As Si content increased, the flow length of the alloy proportionally increased. The flow length of aluminum alloy containing 2 wt% Si was about 85% of that of the ALDC12 alloy. A heat dissipation component was successfully fabricated using an optimized composition of Al-1 wt%Cu-0.6 wt%Fe-2 wt%Si die casting alloy without surface cracks, which were turned out as intergranular cracking originated from the solidification contraction of the alloy with Si composition lower than 2 wt%.

접합 판형 열교환기(BPHE)의 내부 코팅에 따른 소재 특성 및 성능 평가에 관한 연구 (Study on the material properties and heating efficiency according to the internal surface coating of the brazed plate heat exchanger (BPHE))

  • 정항철;양현석;김현종;박종포
    • 한국결정성장학회지
    • /
    • 제30권6호
    • /
    • pp.237-243
    • /
    • 2020
  • 본 연구에서는 STS-316 플레이트와 구리(Cu) 브레이징으로 구성된 접합 판형 열교환기(BPHE, Brazed Plate Heat Exchanger)의 내식성과 열효율 성능 향상을 위해 실란계 코팅을 적용하고자 하였다. 코팅 재료에 따른 부식 및 접촉각을 평가하여 선정된 코팅재료를 열교환기에 적용하였으나, 전열 성능 평가 결과 코팅하지 않은 열교환기에 비해 열효율이 떨어지는 결과가 나타났다. 이는 접합 판형 열교환기 내부의 유로에 코팅제의 고착화 및 표면의 잔여 코팅제가 열저항으로 작용하여 열전달을 방해는 것으로 분석되었다. 이는 내부에 미세한 유로가 존재하는 판형 열교환기의 구조적인 특성에 기인한 것으로, 판형 열교환기 제작 공정에서 사전에 유로 표면에 코팅 후 제작하는 것이 전열성능을 향상 시킬 수 있을 것으로 판단된다.

티타늄합금 레저보트의 구조설계를 위한 설계하중 비교연구 (Comparative Study of Design Loads for the Structural Design of Titanium Leisure Boat)

  • 염재선
    • 한국산학기술학회논문지
    • /
    • 제22권2호
    • /
    • pp.733-738
    • /
    • 2021
  • 최근 국내 해양레저에 대한 국민들의 관심이 높아지고 있고, 해외 시장 개척을 위한 레저선박 건조 및 제조업체들의 연구개발이 활발한 실정이다. 기존 레저보트에 많이 사용되어 온 재료 중에서 FRP와 알루미늄합금은 각각 장기간 사용으로 인한 흡습성과 재활용이 불가능한 환경문제와, 높은 열전도도와 고열에 약해 화재에 취약하다는 단점을 가지고 있다. 따라서 본 연구에서는 높은 비강도와 내식성을 갖춘 티타늄합금을 선체 재료로 선택하였고, 선박의 구조설계를 위해 충격하중에 의한 설계하중을 4가지 규정으로부터 산정하고, 이 하중에 대응하는 선체 판두께를 추정하였다. 국제표준인 ISO 12215-5, 이탈리아선급인 RINA Pleasure Yacht, 영국선급인 LR Special Service Craft, 한국선급인 KR 고속경구조선규칙을 비교 분석한 결과, 최대 슬래밍하중은 ISO, KR, LR, RINA의 크기 순서로 높게 계산되었고, 요구되는 판 두께도 ISO, KR, LR, RINA의 크기 순서로 추정되었다. 레저보트는 국제 규정에 적합한 설계와 인증이 필수적이므로, 각 규정에 대한 사용자의 이해를 높이고 해외 수출 선박의 설계 및 승인 절차에 도움이 되리라 생각한다.

CAS glass와 Yb2O3를 이용한 2차상의 형상 제어가 AlN 세라믹의 열전도도 및 기계적 특성에 미치는 영향 (Effect of Morphological Control of Secondary Phase using Yb2O3 and Ca-Al-Si-O-based Glass on Thermal and Mechanical Properties of AlN)

  • 최동규;김시연;여동훈;신효순;정대용
    • 한국분말재료학회지
    • /
    • 제27권6호
    • /
    • pp.498-502
    • /
    • 2020
  • We investigate the effects of Yb2O3 and calcium aluminosilicate (CAS) glass as sintering additives on the sintering behavior of AlN. The AlN specimens are sintered at temperatures between 1700℃ and 1900℃ for 2 h in a nitrogen atmosphere. When the Yb2O3 content is low (within 3 wt.%), an isolated shape of secondary phase is observed at the AlN grain boundary. In contrast, when 3 wt.% Yb2O3 and 1 wt.% CAS glass are added, a continuous secondary phase is formed at the AlN grain boundary. The thermal conductivity decreases when the CAS glass is added, but the sintering density does not decrease. In particular, when 10 wt.% Yb2O3 and 1 wt.% CAS glass are added to AlN, the flexural strength is the highest, at 463 MPa. These results are considered to be influenced by changes in the microstructure of the secondary phase of AlN.

다공성 철 분말을 이용한 열전지용 열원 적합성 연구 (Study on the Suitability of Heat Source for Thermoelectric Cells Using Porous Iron Powder)

  • 김지연;윤현기;임채남;조장현
    • 한국전기전자재료학회논문지
    • /
    • 제35권4호
    • /
    • pp.377-385
    • /
    • 2022
  • Thermal batteries are specialized as primary reserve batteries that operate when the internal heat source is ignited and the produced heat (450~550℃) melts the initially insulating salt into highly conductive eutectic electrolyte. The heat source is composed of Fe powder and KClO4 with different mass ratios and is inserted in-between the cells (stacks) to allow homogeneous heat transfer and ensure complete melting of the electrolyte. An ideal heat source has following criteria to satisfy: sufficient mechanical durability for stacking, appropriate heat calories, ease of combustion by an igniter, stable combustion rate, and modest peak temperature. To satisfy the aforementioned requirements, Fe powder must have high surface area and porosity to increase the reaction rate. Herein, the hydrothermal and spray drying synthesis techniques for Fe powder samples are employed to investigate the physicochemical properties of Fe powder samples and their applicability as a heat source constituent. The direct comparison with the state-of-the-art Fe powder is made to confirm the validity of synthesized products. Finally, the actual batteries were made with the synthesized iron powder samples to examine their performances during the battery operation.