• Title/Summary/Keyword: 열전도도 측정

Search Result 270, Processing Time 0.033 seconds

Development of Thermal Conductivity Measurement Device of Nanofluids Using Quasi-Steady State Method (준정상 상태법을 이용한 나노유체의 열전도도 측정장치 개발)

  • Park, Ji-Hun;Kim, Hyun-Jin;Jang, Seok-Pil
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.636-639
    • /
    • 2010
  • 본 논문에서는 준정상 상태법을 이용한 열전도도 측정장치의 불확실도를 분석하고 측정된 열전도도의 불확실도에 가장 큰 영향을 미치는 요인이 온도 측정 센서의 정확도와 측정유체의 윗면과 아랫면의 온도 차임을 알아내었다. 특히 온도 측정센서의 정확도가 $0.1^{\circ}C$일 때 측정유체의 윗면과 아랫면의 온도차가 $18^{\circ}C$이상이면 준정상 상태법을 이용한 열전도도 측정장치의 불확실도가 ${\pm}1%$이내로 들어옴을 알 수 있었다. 따라서 온도 측정센서가 $0.1^{\circ}C$의 정확도를 가지며 측정유체의 윗면과 아랫면의 온도차가 $18^{\circ}C$이상이 되는 불확실도 ${\pm}1%$을 갖는 준정상 상태법을 이용한 나노유체의 열전도도 측정장치를 개발하였다. 개발된 실험장치의 검증을 위하여 DI-Water의 열전도도와 $Al_2O_3$ 나노유체의 열전도도를 각각 측정하여 기존 문헌 및 선행 연구자의 결과와 비교하여 보았고 개발된 장치가 ${\pm}1%$ 이내의 불확실도를 가지고 나노유체의 열전도도를 측정할 수 있음을 확인하였다.

  • PDF

Integrity of Optical Fiber Sensor for Measurement of Ground Thermal Conductivity (지중 열전도도 측정을 위한 광섬유 센서의 건전성)

  • Yoon, Seok;Choi, Jung-Chan;Lee, Seung-Rae;Lee, Michael-MyungSub
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.157-160
    • /
    • 2011
  • 본 연구에서는 광섬유 센서 기반 스마트 모니터링 시스템이 지중 열전도도 측정에도 효율적으로 적용될 수 있는지를 분석하였다. 이를 위해 광섬유 온도센서를 이용하여 지반의 열전도도를 측정할 수 있는 열응답 시험기가 개발되었다. 개발된 열응답 시험기는 기존의 RTD(Resistance Temperature Detector) 온도 센서 외에 광섬유 센서의 한 종류인 FBG(Fiber Bragg Grating) 센서도 실시간적으로 측정할 수 있는 시스템으로 구성되어 있다. 개발된 장비의 적용성 검증을 위하여 주문진 표준사를 이용하여 모형토조 내에 일정한 간극비에 맞추어 시료가 조성되었으며 지중열교환기는 U자형 파이프가 사용되었다. 20시간동안 열응답 시험을 통하여 광섬유 센서와 RTD 센서를 동시에 이용하여 온도값을 측정하여 표준사의 열전도도 값을 산출하였다. 그 결과 모형실험을 통한 열전도도 값은 탐침법을 통해 얻어진 열전도도 값과 선형 열원 모델(line source model) 해석해와 거의 유사하게 나타났으며 광섬유 센서와 RTD 센서와의 온도차는 0.1~0.3$^{\circ}$로써 유사한 값을 나타내었다. 따라서 본 연구에서 개발된 광섬유 기반 열응답 시험기는 지반의 열전도도를 측정하는데 효과적으로 사용될 수 있음을 알 수 있었으며 향후 지열시스템 가동에 따른 지중열 교환기의 손상도 평가 및 경보시스템 개발을 위해 지중열교환기의 거동을 실시간으로 모니터링 하는데 있어서도 효과적으로 사용될 수 있을 것으로 생각된다.

  • PDF

단일 나노선의 열전물성 측정용 열전 MEMS 플랫폼 개발

  • Sin, Ho-Seon;Jeon, Seong-Gi;Lee, U;Yu, Jin;Song, Jae-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.589-589
    • /
    • 2013
  • 열전재료는 제백효과(Seebeck effect)에 의해 폐열을 전기에너지로 변환시킬 수 있는 소재로서, 기존의 열전재료가 나노수준으로 크기가 줄어들 경우 양자제한효과에 의한 제백계수의 증가와 표면산란에 의한 열전도도 감소로 인해 벌크재료에 비해 높은 에너지변환효율을 가질 수 있을 것으로 기대되고 있다. 에너지 변환효율은 열전성능계수인 $ZT=S2{\sigma}T/k$로 정의되며 따라서 우수한 열전재료는 높은 제백계수 S와, 높은 전기전도도 ${\sigma}$ 및 낮은 열전도도 k를 갖는 재료여야 한다. 그러나 나노소재는 낮은 측정 신호와 측정소자준비가 어려워 기존 측정시스템으로는 원활한 측정이 어렵다. 특히 열전도도의 경우 나노소재 자체의 열전도 보다 나노소재 주변 구조에 의한 열전도가 큰 경우 정확한 열전도도 평가가 어렵다. 본 연구에서는 나노선의 열전물성을 평가하기 위해 MEMS기반 기술을 이용하여 열전물성 측정플랫폼(MEMS-based thermoelectric measurement platform, MTMP)을 개발하였다. 개발 된 MTMP는 얇은 Si nitride 브릿지들이 허공에 떠 있는 두 개의 아일랜드 형태의 멤브레인 구조를 지지하는 형태로 제작되었으며, 한 쪽 아일랜드구조 위에는 나노히터가 있어 두 아일랜드 구조 사이에 온도구배를 만들 수 있도록 제작되었다. 제작된 멤브레인을 이용하여 전기화학적인 방법으로 합성한 Bi-Te계 나노선의 S, ${\sigma}$ 그리고 k를 측정하였다. 측정결과 화학양론적 미세구조를 갖는 단결정 Bi2Te3 나노선은 300 K의 측정온도에서 $S=-57{\mu}V/K$, ${\sigma}=3.9{\times}10^5S/m$, k=2.0 W/m-K의 측정 값으로 ZT=0.19였다. 본 연구에서 개발한 MTMP는 나노선 뿐만 아니라 나노플레이트의 열전 측정에도 활용할 수 있는 구조로서 나노열전소재 측정에 널리 활용될 수 있다.

  • PDF

THERMAL CONDUCTIVITY MEASUREMENT OF LIQUID AND SOLID FOODS USING A THERMAL PROBE (열탐침을 이용한 식품의 열전도도 측정)

  • 홍지향;한영조;고학균
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1999.12a
    • /
    • pp.516-522
    • /
    • 1999
  • 열전도도, 열확산도 , 비열로 대표되는 열적 특성은 식품의 가열 및 냉각공정의 설계에 사용되는 주요 설계인자로서 , 정확한 열적특성 자료가 있으며, 각 공정에서 가하거나 감해야 하는 총 열량과 단위 시간당 가감되어야 하는 열량을 정확히 결정할 수 있다. 본 연구에서는 액상과 고상 식품의 열전도도를 신속 정확하게 측정하기 위하여 열 탐침을 사용하는 열전도도 측정장치를 개발하였다. 본 장치는 기존 열전도 측정장치와 달리 열전도도가 아려진 표준시료를 사용하는 Calibration을 하지않고, 직접 열전도도를 측정할수있도록, 열탐침의 직경대 길이의 비가 100으로 설계하였다. 증류수와 글리세린의 열전도도를 본 측정장치로 측정한 결과 , 증류수는 문헌값보다 1.2% 미만, 글리세린은 0.7% 미만의 측정오차를 보였다. 소고기 Frankfurter 의 열전도도를 2$0^{\circ}C$에서 8$0^{\circ}C$의 온도범위에서 측정한 결과를 0.389에서 0.350W/mK 이었다.

  • PDF

박막형 열전 소재의 두께 방향 열전도도 측정 장비 개발

  • Kim, Yeong-Seok;Ha, Su-Hyeon;Gang, Sang-U;Song, Jae-Yong;Park, Seon-Hwa;Hyeon, Seung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.112-112
    • /
    • 2016
  • 열전 발전은 버려지는 폐열을 재사용 가능한 에너지로 전환할 수 있다는 점에서 차세대 청정 에너지원으로 분류되며, 19세기 초 발견된 이래 꾸준히 연구되어온 연구 분야이다. 특히 1990년대 열전소재로의 나노 기술의 접목에 따라 열전성능(figure of merit, ZT)이 2 배 이상 증가 되면서, 고성능의 열전 소재 개발을 위해 나노구조화 연구가 활발히 진행되고 있다. 하지만, 기존의 열전 특성 측정용 상용 장비의 경우, 벌크형 소재를 대상으로 설계되어 연구실 수준에서 개발되고 있는 마이크로미터 스케일의 두께를 가지는 박막형 열전 소재의 두께 방향 (cross-plane)의 열전 특성을 평가하는데 정밀성이 떨어져서 적합하지 않다. 이러한 표준화된 측정 기술의 부재로 인하여 최근 연구되고 있는 나노소재들의 열전 특성 측정 결과를 정확하게 측정하지 못하고 있다 [1] 본 연구에서는 박막형 열전 소재의 열전성능을 평가하는데 가장 중요한 요소인 열전도도를 측정하기 위해 장비를 설계하고, 장비의 측정 능력에 대해 평가하였다. 특히, 측정 포인트 간 큰 온도 차가 발생하여 비교적 쉽게 측정이 가능한 너비 방향 (in-plane) 이 아닌, 온도 차가 작은 박막의 두께 방향의 열전도도를 측정하였다. 그리고 센서의 측정 능력을 평가하기 위해, 폴리이미드를 대상으로 $-10-70^{\circ}C$ 온도 범위에서 측정한 결과와 벌크형 소재 대상으로 신뢰성이 확보된 보호열판법을 이용해 측정한 결과를 비교하였다.

  • PDF

A Comparison of Laser Flash and the Divided-bar Methods of Measuring Thermal Conductivity of Rocks (암석 열전도도 측정을 위한 Laser Flash Method와 Divided-bar Method 비교)

  • Oh, Jae-Ho;Kim, Hyoung-Chan;Park, Jeong-Min
    • Economic and Environmental Geology
    • /
    • v.44 no.5
    • /
    • pp.387-397
    • /
    • 2011
  • In this study, we conducted the study of the merits and demerits of the laser flash and the divided-bar methods for measuring the thermal conductivity of rocks and investigated applicability of the divided-bar apparatus which was developed by KIGAM. The laser flash method can measure thermal diffusivity, specific heat capacity, and thermal conductivity of rocks with even small thickness (< ~3 mm) in the high temperature range($25-200^{\circ}C$) in non-contact mode. For the laser flash method, samples must be uniform and homogeneous. In the case of the divided-bar method, the apparatus measures only thermal conductivity of rock samples at the room temperature. We measured thermal conductivities of 12 rock samples with low density and high porosity using two methods. In the laser flash method, there exist potential errors caused by the effect of pulse dispersion and reflection by various minerals and porosity in rock samples; the difference in thermal conductivity values measured on the front surface and the opposite surface ranges from 0.001 to 0.140 W/mK with the standard deviation of 0.003~0.089 W/mK, which seems to be caused by heterogeneity of rock samples. On the contrary, the divided-bar apparatus shows stable thermal conductivity measurements and relatively small measurement errors; the difference in thermal conductivity values, just as we applied to the laser frash method, is 0.001~0.016 W/mK with the standard deviation 0.001~0.034 W/mK. In turn, the divided-bar method can be applied to more thick samples that are more representative of bulk thermal conductivity.

Characterization of thermal conduction for gas hydrate bearing in-situ sediments (울릉분지 현장 시료와 F110표준사를 이용한 GH함유토의 열전달 양상 분석)

  • Kim, Young Jin;Yun, T.S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.148.1-148.1
    • /
    • 2011
  • 본 연구에서는 가스 하이드레이트의 미래 상업생산을 위한 연구활동으로 동해 울릉분지 현장시료를 채취하여 가스 하이드레이트 함유토의 열전도 현상에 관한 연구를 실시하였다. 두 종류의 현장시료를 이용하여 메탄 하이드레이트를 생성하여 공극비 및 포화도에 따라 조건을 달리하여 실험을 수행하였다. 열전도도 측정을 위하여 Transient Plane Source (TPS) 기법을 이용하였다. 현장시료의 사용에 앞서 예비실험으로써 F110표준사를 사용, 비교 분석 자료로써 활용하였다. 하이드레이트 생성 확률을 높이는 기법으로써 불포화시료를 동결, 해동 후 가스를 주입하였으며 동결된 불포화 시료의 열전달양상의 변화를 함께 고찰하였다. 실험결과, 하이드레이트의 포화도가 증가함에 따라 함유토의 열전도도의 증가함을 알 수 있어다. 거의 동일한 물과 GH의 열전도도에도 불구하고 하이드레이트 결정화 작용으로 동일한 포화도의 불포화 시료와 비교하여 약간의 상승을 보였다. 또한 공극비 및 흙을 구성하는 미네랄의 성분에 따라 열전도도의 발현 양상이 상이함을 관찰하였다. 이에 차후 하이드레이트 생산을 위한 현장 측정 및 전산 모사시 이에 관한 고려가 필요할 것으로 사료된다.

  • PDF

표면 거칠기에 따른 전하 이동도 특성 평가

  • Sin, Hye-Seon;Im, Gyeong-Seok;Jang, Mun-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.342-342
    • /
    • 2016
  • 최근 반도체 제조 공정 기술이 발전함에 따라, 나노 영역에서의 열 및 전기 특성에 관련하여 깊이 있는 연구들이 많이 수행되고 있다. 그 중 반도체 기판의 표면 거칠기는 열전도도 및 전하 이동도와 밀접한 관련이 있으며 나노 소자의 특성을 결정짓는 중요한 요소가 된다. 표면이 거친 정도에 따라 포논 산란 작용이 열적 특성에 영향을 미치며 표면 거칠기와 상응하는 포논의 파장은 이를 산란시켜 열전도도를 감소시키는 것으로 보고되었다[1]. 또한, 트랜지스터의 소형화에 따라 수직 전계가 증가하며 그 결과, 표면 거칠기 성분이 표면에서의 전자 및 홀의 이동 특성에 영향을 미친다. 따라서 원자 층 두께의 표면 거칠기의 중요성이 부각되며 이에 대한 물성 연구가 수행되어야 한다. <100> 벌크 실리콘에서 약산 용액인 500-MIF를 이용하여 시간에 따라 dipping을 진행한 후 표면 거칠기의 변화를 profiler (Tencor P-2)로 측정하여 확인하였다. 거칠기는 dipping을 시작한 후 10분부터 18분까지 약 $3{\AA}/min$의 변화를 가지는 것으로 관측이 되었다. 또한 Hall measurement system으로 벌크 실리콘에서의 온도에 따른 전하 이동도를 측정하였다. 측정 결과, 300 K일 때 p-type 벌크 실리콘의 전형적인 전하 이동도 값인 약 $450cm^2/V{\cdot}s$을 얻었으며, 저온에서는 높은 이동도를 가지다가 온도가 증가할수록 이동도가 감소하는 형태를 확인하였다. 서로 다른 표면 거칠기를 가지는 반도체 기판을 저온부터 상온 이상까지 온도의 변화를 주어 그에 따른 전하 이동도를 측정하고 열전도도 및 전하 이동도의 특성을 분석하였다.

  • PDF

Thermal Conductivity Measurement of Rock Cores from Ulleung Island Using PEDB System at Room Temperature (상온 환경에서 PEDB를 이용한 울릉도 시추코어의 열전도도 예비 측정)

  • Lee, Sang Kyu;Lee, Tae Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.3
    • /
    • pp.121-130
    • /
    • 2016
  • Several factors are discussed that should be considered in measuring thermal conductivity of rock cores with a PEDB (potable electronic divided bar) system, which is relatively accurate and easy to operate, and can measure the thermal conductivity of rock cores for various diameters. Then the system is applied to measure thermal conductivity of 70 rock cores from Ulleung Island. Air temperature affects most on the thermal conductivity measurements, so that it is very important to minimize the temperature change during the measurement. Other factors such as the temperature of heat source, averaging time window on the thermal conductivity measurements do not affect much compared to air temperature. Slightly higher thermal conductivity is measured when using the thermal contact paste between the sample and heat source or heat sink. Especially, rock cores with irregular surface showed bigger difference. Repeatability showed less than ${\pm}0.3%$ for standard samples and less than ${\pm}4%$ for rock samples, respectively, when the room temperature changes within $1^{\circ}C$ during the measurements. Thermal conductivity of the rock cores from Ulleung Island roughly increases as depth increases but does not show any dependency on the rock types.

Thermal conductivity of acrylic composite films containing graphite and carbon nanotube (흑연과 탄소나노튜브를 함유한 아크릴 복합체 박막의 열전도도)

  • Kim, Jun-Yeong;Gang, Chan-Hyeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.185-185
    • /
    • 2016
  • 아크릴계 수지(resin)에 인조 흑연과 탄소나노튜브(carbon nanotube)를 1:1 비율로 혼합한 충전제(filler)와 용제(solvent) 및 기타 첨가제(additives)를 혼합하여 방열도료를 제조하여 수직방향 열전도도를 상온에서 평가하였다. 충전제의 함량을 1, 2, 5 중량 %로 변화시키며 원료들을 준비하여 교반기로 혼합한 뒤 3단 롤 밀(three roll mill)로 분산공정을 진행하여 3 종류의 도료를 제조하였다. 제조한 도료를 가로 11 mm, 세로 11 mm, 두께 0.4 mm의 Al 5052 알루미늄 기판에 스프레이 코팅 방식으로 도포한 후 $150^{\circ}C$에서 30분 동안 열경화 건조 과정을 거쳐 샘플을 제작하였다. 측정 시료의 형상은 대략적으로 Fig. 1과 같다. 열전도도는 식 $k={\alpha}{\cdot}C_p{\cdot}{\rho}$를 사용해서 계산된다. 여기서 k는 열전도도($W/m{\cdot}K$), ${\alpha}$는 열확산계수($mm^2/s$), $C_p$는 비열($J/kg{\cdot}K$), ${\rho}$는 밀도($g/cm^3$)를 나타낸다. 열확산계수는 독일 NETZSCH 사의 Laser Flash Analysis 장비(모델명 LFA 457)를 사용하여 측정하였는데, 기판 뒤쪽에서 레이저를 조사하고 도료층 전면에서 적외선 온도센서를 통해 시간에 따른 온도 상승곡선을 구한 후, 두 물체의 계면에서의 접촉 열저항(contact thermal resistance)을 감안하여 장비에 내장되어 있는 소프트웨어로 열확산계수가 계산된다. 비열은 같은 회사의 DSC(Differential Scanning Calorimetry) 200 F3 장비를 사용해 측정했으며, 밀도는 부피와 질량을 측정한 값을 이용하여 계산하였다. 도료를 도포하지 않은 bare Al plate에 대해서는 쉽게 열확산계수, 비열, 밀도를 측정하여 열전도도를 구할 수 있다. 도료가 코팅된 샘플에 대해서는 도료층을 일부 떼어내 비열을 측정하고, 밀도를 구한 후, 도료층의 열전도도가 2-layer 법으로 장비 내장 소프트웨어로 계산된다, 이때 Al 기판의 열확산계수, 비열, 밀도는 미리 측정한 bare Al plate의 값을 적용하였다. 실험 결과를 Table 1에 정리하였다. 흑연과 탄소나노튜브를 혼합한 충전제를 함유한 아크릴 복합체 박막에서 측정된 열전도도는 보통 고분자 재료의 열전도도 값의 상한 영역에 육박하는 값이며, 충전제 함량이 증가할수록 열전도도가 증가하는 경향을 보이고 있다.

  • PDF