DOI QR코드

DOI QR Code

A Comparison of Laser Flash and the Divided-bar Methods of Measuring Thermal Conductivity of Rocks

암석 열전도도 측정을 위한 Laser Flash Method와 Divided-bar Method 비교

  • Received : 2011.09.01
  • Accepted : 2011.10.15
  • Published : 2011.10.28

Abstract

In this study, we conducted the study of the merits and demerits of the laser flash and the divided-bar methods for measuring the thermal conductivity of rocks and investigated applicability of the divided-bar apparatus which was developed by KIGAM. The laser flash method can measure thermal diffusivity, specific heat capacity, and thermal conductivity of rocks with even small thickness (< ~3 mm) in the high temperature range($25-200^{\circ}C$) in non-contact mode. For the laser flash method, samples must be uniform and homogeneous. In the case of the divided-bar method, the apparatus measures only thermal conductivity of rock samples at the room temperature. We measured thermal conductivities of 12 rock samples with low density and high porosity using two methods. In the laser flash method, there exist potential errors caused by the effect of pulse dispersion and reflection by various minerals and porosity in rock samples; the difference in thermal conductivity values measured on the front surface and the opposite surface ranges from 0.001 to 0.140 W/mK with the standard deviation of 0.003~0.089 W/mK, which seems to be caused by heterogeneity of rock samples. On the contrary, the divided-bar apparatus shows stable thermal conductivity measurements and relatively small measurement errors; the difference in thermal conductivity values, just as we applied to the laser frash method, is 0.001~0.016 W/mK with the standard deviation 0.001~0.034 W/mK. In turn, the divided-bar method can be applied to more thick samples that are more representative of bulk thermal conductivity.

본 연구에서는 암석 열전도도 측정을 위해 많이 사용하고 있는 Laser flash method와 Divided-bar method의 장단점을 비교 분석하여 자체 제작한 Divided-bar apparatus의 적용 가능성을 분석하고자 하였다. Laser flash method는 비접촉식으로 아주 작은 시료(두께 3 mm 이하)에 적합하며, 높은 온도($25^{\circ}C{\sim}200^{\circ}C$)의 범위까지 비열, 열확산률, 열전도도 측정이 가능하다. 시료의 조건은 물질이 균등, 균일해야 한다. 반면 Divided-bar method는 주로 상온에서 열전도도만 측정할 수 있다. 밀도가 낮고 공극이 큰 12개의 암석 시료를 두 가지 방법으로 측정 분석해 보았다. Laser flash method로 측정한 결과, 암석 시료 표면의 공극 분포가 일정하지 않으며, 광물 조성이 균등, 균일하지 않아 표면에 laser pulse로 열을 가할 때 반사 및 산란작용의 영향으로 시료 전면과 반대면으로 측정했을 때의 열전도도 차이가 0.001~0.140 W/mK 범위, 표준편차 0.003~0.089 W/mK 범위로 나타났다. divided-bar apparatus의 경우, 비교적 두꺼운 암석 시료를 측정할 수 있어 암석 열전도도 대표성이 높고, 시료를 밀착하여 열전달을 하므로 전면과 반대면으로 측정했을 때의 열전도도 차이는 0.001~0.016 W/mK, 표준편차 0.001~0.034 W/mK 범위로 Laser flash method에 비해 비교적 안정된 값을 보인다.

Keywords

References

  1. Beardsmore, G.R. and Cull, J.P. (2001) Crustal heat flow: A guide to measurement and modeling, Cambridge Univ. Press, 324p.
  2. Benfield, A.E. (1939) Terrestrial heat flow in Great Britain. Proceedings of the Royal Society of London, 173A, p.428-450.
  3. Birch, F. and Clark, H. (1940) The thermal conductivity of rocks and its dependance upon temperature and composition, Am. J. Sci., v.238, n.8, p.529-558. https://doi.org/10.2475/ajs.238.8.529
  4. Herrin, J.M. and Deming, D. (1996) Thermal conductivity of U.S. coals, J. Geophy. Res., v.101, n.B11, p.25381-25386. https://doi.org/10.1029/96JB01884
  5. Cha, J.H., Koo, M.H., Kim, Y.S. and Lee, Y. (2011) Analyzing Effective Thermal Conductivity of Rocks Using Structural Models, Econ. Environ. Geol., v.44, n.2, p.171-180. https://doi.org/10.9719/EEG.2011.44.2.171
  6. Kim, H.C. and Song, M.Y. (1999) A Study on the Effective Utilization of Temperature Logging data for calculating Geothermal gradient, Econ. Environ. Geol., v.32, n.5, p.503-517.
  7. Kim, H.C., Lee, Y. and Park, J. (2006) GIS spatial D/B formation of geothermal data and Distribution of Heat Flow of Korea, Preceeding of the 2006 Spring Workshop of Korean Soc. New and Renewable Energy, p.459-460.
  8. Kim, H.C. and Lee, Y. (2007) Heat flow in the Republic of Korea, Journal of Geophysical Research. 112, B05413, doi:10.1029/2006JB004266
  9. Lim, K.H., Kim, S.K. and Chung, M.K. (2009) Improvement of thermal diffusivity measurement of thin samples and error prediction, Proceeding of the 2009 Fall workshop of Korean Soc. Mechanical Engineers, p.1687-1692.
  10. Mizutani, H., Baba, K., Kobayashi, N., Chang, C.C., Lee, C.H. and Kong, Y.S. (1970) Heat Flow in Korea, Techtonophysics, v.10, p.183-203. https://doi.org/10.1016/0040-1951(70)90106-X
  11. Park, J., Kim, H.C., Lee, Y. and Song, M.Y. (2007) A study on thermal properties of rocks from Gyeonggi-do, Gangwon-do, Chungchung-do, Korea, Econ. Environ. Geol., v.40, n.6, p.761-769.
  12. Park, J., Kim, H.C., Lee, Y., Shim, B.W. and Song, M.Y. (2009) Thermal Properties of Rocks in the Republic of Korea, Econ. Environ. Geol., v.42, n.6, p.591-598
  13. Parker, W.J., Jenkins, R.J., Buter, C.P. and Abbott, G.L. (1961) Flash method of determining thermal diffusivity, heat capacity and thermal conductivity, J. Appl. Phys., v.32, n.9, p.1679-1684. https://doi.org/10.1063/1.1728417
  14. Shim, B.O., Lee, Y., Kim, H.C. and Song, Y. (2006) Investigation of Thermal and Hydraulic Characteristics for the Performance Analysis of a Borehole Heat Exchanger, Jour. Korean Soc. Geosys. Engin., v.43, n.2, p.97-105.
  15. Song, M.Y., Kim, H.C. and Jun, U.S. (1996) The measurements of Heat transfer on some rock specimens in Korea, Jour. Korean Earth Science Society, v.17, n.6, p.458-464
  16. Von Herzen, R.P. and Maxwell, A.E. (1959) The measurement of thermal conductivity of deep-sea sediments by a needle probe method, Journal of Geophysical Research, v.64, p.1557-1563. https://doi.org/10.1029/JZ064i010p01557

Cited by

  1. Relative constructability and thermal performance of cast-in-place concrete energy pile: Coil-type GHEX (ground heat exchanger) vol.81, 2015, https://doi.org/10.1016/j.energy.2014.08.012