DOI QR코드

DOI QR Code

Geochemical Characteristics of Black Slate and Coaly Slate from the Uranium Deposit in Deokpyeong Area

덕평리 지역 우라늄광상의 흑색점판암과 탄질점판암의 지구화학적 특성

  • Shin, Dong-Bok (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Kim, Su-Jeong (Department of Geoenvironmental Sciences, Kongju National University)
  • 신동복 (공주대학교 지질환경과학과) ;
  • 김수정 (공주대학교 지질환경과학과)
  • Received : 2011.08.13
  • Accepted : 2011.10.20
  • Published : 2011.10.28

Abstract

Geochemical study was performed on black slates and interbedded U-bearing coaly slates in Deokpyeongri area, the representative uranium mineralized district of the Ogcheon Metamorphic Belt, to discuss the genetic environments of the uranium deposit. REE concentration (254 ppm) of the black slates is higher than that (169 ppm) of the coaly slates and NASC-normalized REE patterns of the coaly slates show remarkable positive Eu anomaly. l11e redox-sensitive trace elements such as V, Cr, Co, Ni, Mo and U in the coaly slates are highly enriched compared to the black slates, especially for V of 24 times, Mo of 62 times, and U of 60 times. In additions, Pd and Pt are also enriched in the coaly slates. Positive Eu anomaly and the noticeable enrichment of the elements listed above compared to those of NASC indicate that those elements were not derived from common seawater but deposited under high temperature and reducing environment of submarine hydrothermal activities. Wide compositional ranges of major elements ($SiO_2/Al_2O_3$: 3.98~11.88, $Al_2O_3/Na_2O$: 25.6~139.06, $K_2O/Na_2O$: 6.80~46.85) also suggest that the source rocks of the sediments are mixtures of sedimentary rocks and igneous rocks. Higher sulfur contents in the coaly slates, 2.6 wt.%, than those in the black slates, 0.6 wt.% also indicates that the former was influenced by hydrothermal activities containing much sulfur. These geochemical characteristics are similar to the genetic environments of South China type PGE deposits (Mo-Ni-Zn-PGE) which is geotectonically correlated with the Ogcheon Metamorphic Belt and is known as sedimentary-exhalative deposits. In conclusions, the uranium and other metallic elements mineralization seems to have occurred in the sedimentary basin that was affected by submarine hydrothermal activities and rich in organic materials under oxygen-poor environments as well.

옥천변성대의 대표적인 우라늄 광화대인 괴산군 덕평리 일대의 흑색점판암과 이에 협재하는 함우라늄 탄질점판암을 상호 구분하여 이들에 대한 지구화학적 연구를 수행함으로써 우라늄 광상의 생성환경에 대해 고찰하였다. 희토류원소 함량은 탄칠점판암이 평균 254 ppm로서 혹색점판암(169 ppm) 보다 높고, 표준시료로 표준화한 결과 탄질시료의 Eu이 현저히 부화되어 나타난다. 산화환원지시원소에 해당하는 원소들의 경우 V, Cr, Co, Ni, Mo, 및 U 등이 흑색점판암에 비해 탄질점판암에서 현저히 부화되어 있는데, 특히, V은 흑색점판암에 비해 24배, Mo은 62배, U은 60배 가량 높게 산출된다. 이 밖에 백금족원소의 경우 Pd와 Pt가 탄질점판암에서 높은 함량을 나타낸다. 정의 Eu 이상을 비롯해 표준 해수기원 셰일에 비해 현저히 부화된 상기 원소들의 산출은 이들이 단순한 해수로부터 침전된 것이 아닌 고온의 환원환경인 해저열수활동과 관련된 퇴적환경에서 생성되었음을 시사한다. 넓은 조성변화를 나타내는 주성분 원소비 ($SiO_2/Al_2O_3$: 3.98~11.88, $Al_2O_3/Na_2O$: 25.6~139.06, $K_2O/Na_2O$: 6.80~46.85)도 퇴적물의 근원암이 퇴적암과 화성암이 혼재되었을 가능성을 나타내며, 또한 황의 함량이 흑색점판암에서 평균 0.6 wt.%인 반면, 탄질점판 암에서는 2.6 wt.%로 높게 나타나는 것은 탄질점판암이 황을 다량 포함하는 열수환경의 영향을 받았음을 보여준다. 이와 같은 지화학적 특징은 옥천변성대와 지구조적으로 대비되며 퇴적분기성 기원으로 알려진 남중국형 백금족광상(Mo-Ni-Zn-PGE)의 생성환경과도 유사한 특징이다. 이상으로 보아 덕평려 일대 우라늄광화작용은 해저열수활동의 영향을 받고 산소가 결핍된 유기물이 풍부한 퇴적분지에서 형성된 것으로 해석된다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Brumsak, H.J. (1986) The inorganic geochemistry of Cretaceous black shales in comparison to modern upwelling sediments from the Gulf of California. In: Summerhayes, C.P., Shaklet, N.J. (Eds.), North Atlantic Paleoceanography. Spec. Publ. GSA, v.21, p.447- 462. https://doi.org/10.1144/GSL.SP.1986.021.01.30
  2. Butler, I.B. and Nestbitt, R.W. (1999) Trace element dis tributions in the chalcopyrite wall of a black smoker chimney: insights from a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Earth Planet Sci. Lett., v.167, p.335-345. https://doi.org/10.1016/S0012-821X(99)00038-2
  3. Cho, M. and Kim, H. (2002) Metamorphic Evolution of the Ogcheon Metamorphic Belt: Review of Recent Studies and Remaining Problems. Jour. Petrol. Soc. Korea, v.11, p.121-137.
  4. Cluzel, D., Cadet, J.P. and Lapierre, H. (1990) Geodynamics of the Ogcheon belt (South Korea). Tectonophysics, v.183, p.41-56. https://doi.org/10.1016/0040-1951(90)90187-D
  5. Coveney, R.M. and Martin, S.P. (1983) Molybdenum and other heavy metals of the Mecca quarry and Logan quarry shales. Econ. Geol., v.78, p.132-149. https://doi.org/10.2113/gsecongeo.78.1.132
  6. Coveney, R.M. and Nansheng, C. (1991) Ni-Mo-PGE-Aurich ores in Chinese black shales and speculations on possible analogues in the United States. Mineral. Deposita, v.26, p.83-88.
  7. Degens, E.T., Williams, E.G. and Keith, E.G. (1958) Application of geochemical criteria [Pennsylvania], part 2 of environmental studies of carboniferous sediments. AAPG Bull., v.42, p.981-997.
  8. Distler, V.V., Yudovskaya, M.A., Mitrofanov, G.L., Prokof'ev, V.Y. and Lishnevskii, E.N. (2004) Geology, composition, and genesis of the Sukhoi Log noble metals deposit, Russia. Ore Geol. Rev., v.24, p.7-44. https://doi.org/10.1016/j.oregeorev.2003.08.007
  9. Francois, R. (1988) A study on the regulation of the concentration of some trace metals (Rb, Sr, Zn, Pb, Cu, V, Cr, Ni, Mn, and Mo) in the Saanich Inlet sediments, British Columbia. Mar. Geol., v.83, p.285-308. https://doi.org/10.1016/0025-3227(88)90063-1
  10. Green, A. and Peck, D. (2005) Platinum group elements exploration: Economic considerations and geological criteria. In: Mungall, J.E.(eds.), Exploration for platinum group element deposits. Short Course Series v.35, MAC, p.247-274.
  11. Gromet, L.P., Dymek, R.F., Haskin, L.A. and Korotev, R.L. (1984) The ''North American shale composite'': its compilation, major and trace element characteristics. Geochim. Cosmochim. Acta, v.48, p.2469-482. https://doi.org/10.1016/0016-7037(84)90298-9
  12. Holland, H.D. (1979) Metals in black shales - a reassessment. Econ. Geol., v.74, p.1676-1679. https://doi.org/10.2113/gsecongeo.74.7.1676
  13. Hulbert, L., Carne, R., Gregoire, C. and Paktunc, D. (1992) Sedimentary nickel, zinc, and platinum-groupelement mineralization in Devonian black shales at the Nickel property, Yukon, Canada: a new deposit type. Explor. Min. Geol., v.1, p.39-62.
  14. Jedwab, J., Blanc, G. and Boulegue, J. (1989) Vanadiferous minerals from the Nereus Deep, Red Sea. Terra Nova, v.1, p.188-194. https://doi.org/10.1111/j.1365-3121.1989.tb00351.x
  15. Jeong, G.Y. (2006) Mineralogy and geochemistry of metalliferous black slates in the Okcheon metamorphic belt, Korea: a metamorphic analogue of black shales in the South China block. Mineral. Deposita, v.41, p.469-481. https://doi.org/10.1007/s00126-006-0067-5
  16. Jeong, G.Y. and Lee, S.H. (2001) Form of molybdenum in the carbonaceous black slates of the Ogcheon Belt. Jour. Miner. Soc. Korea, v.14, p.52-57.
  17. Kang, S.A., Kim, Y.J. and Lee, Y.J. (2010) Genetic consideration of uranium and vanadium minerals in black slates of the Ogcheon Belt. (abstract), Korean Soc. Econ. Env. Geol., p.95.
  18. KIGAM(Korea Institute of Geoscience and Mineral Resources), (2010) Total cycle technical development for securing of domestic and overseas uranium resources. KIGAM report, 122pp.
  19. Kim, J.H. (1989) Geochemistry and genesis of Guryongsan (Ogcheon) uraniferous black slate. Jour. Korean Inst. Mining Geol., v.22, p.35-63.
  20. Kim, T.H. and Cho, M. (2000) Distribution and igneous texture of metasedimentary rocks in ''Munjuri Formation'' of the Ogcheon Metamorphic Belt: existence of high-volcanicity rift. (abstract), Petrol. Soc. Korea, p.86.
  21. Klinkhammer, G., Elderfield, H. and Hudson, A. (1983) Rare earth elements in seawater near hydrothermal vents. Nature, v.305, p.185-188. https://doi.org/10.1038/305185a0
  22. Koh, H.J. (1995) Structural analysis and tectonic evolution of the Ogcheon Supergroup, Goesan, Central part of the Ogcheon Belt, Korea. Ph.D. Thesis (Unpubl), Seoul National Univ., 282pp.
  23. Lee, C.H. and Lee, H.K. (1997) Geochemistry and mineralogy of metapelite and barium-vanadium muscovite from the Ogcheon Supergroup of the Deokpyeong Area, Korea. Econ. Environ. Geol., v.30, p.35-49.
  24. Lee, D.J. (1986) Mineralogy of low-grade uranium ores in the black slate of the Ogcheon Group, Korea. Jour. Korean Inst. Mining Geol., v.19, p.133-146.
  25. Lee, D.S., Yun, S.K., Lee, J.H. and Kim, J.T. (1986) Lithologic and structural controls and geochemistry of uranium deposition in the Ogcheon Black-Slate Formation. Jour. Korean Inst. Mining Geol., v.19, p.19-41.
  26. Lee, J.H. and Kim, J.H. (1972) Geologic map of Goesan Sheet 1:50,000. Geological and mineral institute of Korea, 24 pp.
  27. Lee, M.S. (1978) Geochemical study of granite intrusions in the area of uranium bearing formation of the Ogcheon System. Jour. Geol. Soc. Korea, v.14, p.113- 119.
  28. Lee, M.S. and Chon, H.T. (1980) Geochemical correlations between uranium and other components in Ubearing formations of Ogcheon Belt. Jour. Korean Inst. Mining Geol., v.13, p.241-246.
  29. Lee, M.S. and Kim, S.W. (1985) Uranium distribution petterns and U-mineral in the U-bearing clay slate of Ogcheon system. Jour. Korean Inst. Mining Geol., v.18, p.135-138.
  30. Lee, S.M., Park, H.I., Kim, S.J., Park, B.S. and Lee, S.H. (1981) Genesis of the uranium deposits in the metasediments of Deogpyeong area, Goesan-gun. Jour. Geol. Soc. Korea, v.17, p.53-68.
  31. Libes, S.M. (1992) An Introduction to Marine Biogeochemistry. Wiley, New York.
  32. Lott, D.A., Coveney, R.M. and Murowchick, J.B. (1999) Sedimentary exhalative Nickel-Molybdenum ores in South China. Econ. Geol., v.94, p.1051-1066. https://doi.org/10.2113/gsecongeo.94.7.1051
  33. Manikyamba, C., Balaram, V. and Naqvi, S.M. (1993) Geochemical signatures of polygenetic origin of a banded iron formation (BIF) of the Archaran Sandur greenstone belt (schist belt) Karnataka nucleus, India. Precam. Res., v.61, p.137-164. https://doi.org/10.1016/0301-9268(93)90061-6
  34. McLennan, S.M., Taylor, S.R. and McGregor, V.R. (1984) Geochemistry of Archean metasedimentary rocks, West Greenland. Geochim. Cosmochim. Acta, v.48, p.1-13. https://doi.org/10.1016/0016-7037(84)90345-4
  35. Michard, A. and Albarede, F. (1986) The REE content of some hydrothermal fluids. Chem. Geol., v.55, p.51-60. https://doi.org/10.1016/0009-2541(86)90127-0
  36. Michard, A., Albarede, F., Michard, G., Minster, J.F. and Charlou, J.L. (1983) Rare-earth elements an uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13 degrees N). Nature, v.303, p.795-797. https://doi.org/10.1038/303795a0
  37. Mills, R.A., Thomson, J., Elderfield, H., Hinton, R.W. and Hyslop, E. (1994) Uranium enrichment in metalliferous sediments from the Mid-Atlantic Ridge. Earth Planet. Sci. Lett., v.124, p.35-47. https://doi.org/10.1016/0012-821X(94)00083-2
  38. Parr, J.M. (1992) Rare-earth element distribution in the exhalites associated with Broken Hill-type mineralization at the Pinacles deposit, New South Wales, Australia. Chem. Geol., v.100, p.73-91. https://doi.org/10.1016/0009-2541(92)90103-C
  39. Pasava, J. (1993) Anoxic sediments - an important environment for PGE: an overview. Ore Geol. Rev., v.8, p.425-445. https://doi.org/10.1016/0169-1368(93)90037-Y
  40. Ruhlin, D.E. and Owen, R.M. (1986) The rare earth element geochemistry of hydrothermal sediments from the East Pacific Rise. Examination of a seawater scavenging mechanism. Geochim. Cosmochim. Acta, v.50, p.393-400. https://doi.org/10.1016/0016-7037(86)90192-4
  41. Sawlowicz, Z. (1993) Iridium and other platinum-group elements as geochemical markers in sedimentary environments. Palaeogeogr. Palaeoclimatol. Palaeoecol., v.104, p.253-270. https://doi.org/10.1016/0031-0182(93)90136-7
  42. Shearme, S., Cronan, D.S. and Rona, P.A. (1983) Geochemistry of sediments from the TAG hydrothermal field, Mid-Atlantic Ridge at latitude 26°N. Mar. Geol., v.51, p.269-291. https://doi.org/10.1016/0025-3227(83)90108-1
  43. Sotto, D. and Yoshiyuki, N. (1999) Rare earth elements in seawater: particle association, shale normalization, and Ce oxidation. Geochim. Cosmochim. Acta, v.63, p.363-372. https://doi.org/10.1016/S0016-7037(98)00279-8
  44. Steiner, M., Wallis, E., Erdtmann, B.D., Zhao, Y. and Yang, R. (2001) Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils.insights into a Lower Cambrian facies and bio-evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol., v.169, p.165-191. https://doi.org/10.1016/S0031-0182(01)00208-5
  45. Thomson, J., Higgs, N.C., Croudace, I.W., Colley, S. and Hydes, D.J. (1993) Redox zonation of elements at an oxic/post-oxic boundary deep sea sediments. Geochim. Cosmochim. Acta, v.75, p.579-595.
  46. Wedepohl, K.H. (1974) Handbook of Geochemistry. Springer-Verlag, Berlin.
  47. Whitehead, R.E.S., Davies, J.F. and Goodfellow, W.D. (1992) Lithogeochemical patterns related to sedex mineralization, Sudbury Basin, Canada. Chem. Geol., v.98, p.87-101. https://doi.org/10.1016/0009-2541(92)90092-J
  48. Yu, B., Dong, H., Widom, E., Chen, J. and Lin, C. (2009) Geochemistry of basal Cambrian black shales and cherts from the Northern Tarim Basin, Northwest China: Implications for depositional setting and tectonic history. Jour. Asian Earth Sci., v.34, p.418-436. https://doi.org/10.1016/j.jseaes.2008.07.003

Cited by

  1. PGE distribution in the metalliferous black slates of the Okcheon Metamorphic Belt, South Korea vol.20, pp.6, 2016, https://doi.org/10.1007/s12303-016-0029-6
  2. 3D Inversion of Aeromagnetic Data In an Area of Geumsan vol.17, pp.2, 2014, https://doi.org/10.7582/GGE.2014.17.2.049
  3. Mineralogy and sulfur isotope compositions of the uraniferous black slates in the Ogcheon Metamorphic Belt, South Korea vol.169, 2016, https://doi.org/10.1016/j.gexplo.2016.07.008
  4. Research Status and Roles of Natural Analogue Studies in the Radioactive Waste Disposal vol.11, pp.2, 2013, https://doi.org/10.7733/jkrws.2013.11.2.133
  5. Occurrence of U-minerals and Source of U in Groundwater in Daebo Granite, Daejeon Area vol.23, pp.4, 2013, https://doi.org/10.9720/kseg.2013.4.399