• Title/Summary/Keyword: 열전달 향상 계수

Search Result 80, Processing Time 0.023 seconds

Effects of Baffles on Heat Transfer and Friction Factors in a Rectangular Channel (사각채널에 설치된 배플이 열전달과 마찰계수에 미치는 효과)

  • Ahn, Soo-Whan;Kang, Ho-Keun;Bae, Sung-Taek;Song, Min-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.693-701
    • /
    • 2006
  • The present work investigates the local heat transfer characteristics and the associated frictional loss in a rectangular channel with inclined solid and perforated baffles to obtain the basic design data for gas turbine. Five different geometries of baffles such as 1) solid (without hole), 2) three holes, 3) six holes, 4) nine holes, 5) twelve holes were covered. A combination of two baffles of same overall size is used. The flow Reynolds number is ranged from 28,900 to 70,100. The placement of baffles augments the overall heat transfer greatly by combining both jet impingement and the boundary layer separation. The present results show that the average Nusselt number distribution is strongly dependent on number of holes in the baffle plates, i.e., the average Nusselt number increases with increasing number of holes. The friction factor decreases also with increasing the number of holes. however. its value increases with increasing the Reynolds number.

Convective Boiling of R-410A in an Aluminum Flat Tube for Air-Conditioning Application (공조용 알루미늄 납작관 내의 R-410A 대류 비등)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3006-3013
    • /
    • 2015
  • Flat tube heat exchangers can improve the thermal performance significantly compared with round tube heat exchangers. For proper design of flat tube heat exchangers, one should know the tubeside heat transfer coefficients. In this study, convective boiling heat transfer coefficients of R-410A were obtained in a flat extruded aluminum tube with $D_h=1.41mm$. The test range covered mass flux from 200 to $600kg/m^2s$, heat flux from 5 to $15kW/m^2$ and saturation temperature from $5^{\circ}C$ to $15^{\circ}C$. The heat transfer coefficient curve shows a decreasing trend after a certain quality(critical quality). The critical quality decreases as the heat flux increases, and as the mass flux decreases. The early dryout at a high heat flux results in a unique 'cross-over' of the heat transfer coefficient curves. The heat transfer coefficient increases as the mass flux increases. At a low quality region, however, the effect of mass flux is not prominent. The heat transfer coefficient increases as the saturation temperature increases. The effect of saturation temperature, however, diminishes as the heat flux decreases. Both the Shah and the Kaew-On et al. correlations reasonably predicted the present data.

Investigation of Natural Convective Heat Flow Characteristics of Heat Sink (히트싱크의 자연대류 열유동 특성 분석)

  • Jung, Tae Sung;Kang, Hwan Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • To ensure proper functioning of electrical and mechanical systems, cooling devices are of great importance. A heat sink is the most common cooling device used in many industries such as the semiconductor, electronic instrument, LED lighting, and automotive industries. To design an optimal heat sink, the required surface area for heat radiation should be calculated based on an accurate expectation of the heat flow rate in the target environment. In this study, the convective heat flow characteristics were numerically investigated for a vertically installed typical heat sink and a horizontally installed one in free convection using ANSYS CFX. Comparative experiments were carried out to reveal the quantitative effect of the installation direction on the cooling performance. Moreover, the result was analyzed using the dimensionless correlation with the Nusselt number and Rayleigh number and compared with well-known theories. Finally, it was observed that the cooling performance of the vertically installed heat sink is approximately 10~15% better than that of the one in natural convection.

Numerical Study of the Rib Arrangements for Enhancing Heat Transfer in a Two-pass Channel of Large Aspect Ratio (종횡비가 큰 이차유로에서 냉각성능 향상을 위한 요철배열 연구)

  • Han, Sol;Choi, Seok Min;Sohn, Ho-Seong;Cho, Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.161-169
    • /
    • 2017
  • The present study investigated the effect of the rib arrangement and a guide vane for enhancing internal cooling of the blade. Two types of rib arrangements were used in the first and second passage in parallel. Aspect ratio of the channel was 5 and a fixed Reynolds number based on hydraulic diameter was 10,000. The attack angle of rib was $60^{\circ}$, rib pitch-to-height ratio (p/e) was 10, and the rib height-to-hydraulic-diameter ratio ($e/D_h$) was 0.075. The effect of an interaction between Dean vortices and the secondary vortices from the first passage was observed. Overall, the attack angle of rib in the first passage was dominant factor to heat transfer and flow patterns in turning region. Also, the channel with a guide vane showed enhanced heat transfer at the tip surface with reducing flow separation and recirculation.

Heat Transfer Characteristics of Tube Bundle Type Beat Exchanger for LFG and LNG Mixed Fuel (LFG와 LNG 혼합연료의 조성에 따른 다관형 열교환기에서의 열전달 특성)

  • Jeon Yong-Han;Kim Yong;Seo Tae-Beom
    • Journal of Energy Engineering
    • /
    • v.15 no.1 s.45
    • /
    • pp.45-51
    • /
    • 2006
  • The purpose of this study is to investigate experimentally the heat transfer characteristics of combustion gas or a mixture fuel of LFG and LNG as compared LFG, LNG A Pilot combustion system is constructed. Tube bundle type heat exchangers with vertical and horizontal baffles are used, and the experiment is carried out for different operating conditions, the heating value, the concentration of methane (44.5%, 54.5%). The results show that the Nusselt number of LNG is higher than that of LFG at the same Reynolds number, and in case LFG, the Nusselt number of the mixture of LFG and LNG is larger than that of LFG alone. Therefore, heat transfer is improved by using LFG that is added to LNG pertinently, if and instability of LFG supply will be relaxed.

Experiments on Single Phase Cooling Heat Transfer and Pressure Drop Characteristics in Microfin Tubes (마이크로휜관 내 단상 냉각 유동 열전달 및 압력 강하 특성에 관한 실험적 연구)

  • 이규정;한동혁
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.3
    • /
    • pp.231-239
    • /
    • 2002
  • Experiments on the single phase cooling heat transfer and pressure drop with microfin tubes were performed using water as a test fluid. Experimental data were obtained in the range of Reynolds number 3000 ~40000 and Prandtl number 4-6. The data of microfin tubes presented the characteristics of rough surface tube in pressure drop and heat transfer Experimental data were compared with the heat transfer and friction factor correlations of smooth tubes. Heat transfer enhancements of microfin tubes were lower than pressure drop penalty factors. The helix angle is more significant parameter in both of the pressure drop and heat transfer than the relative roughness. The correlations of Nusselt number and friction factor were suggested for the tested microfin tubes. Maximum deviations between correlations and experimental data were within $\pm15$% for Nusselt number and $\pm10$% for friction factor.

Numerical Analysis of Heat Transfer in the Ribbed Channel Inserted with Tape (테이퍼가 설치된 리브(rib)이 있는 채널의 열전달에 대한 수치해석)

  • Kang, Ho-Keun;Ahn, Soo-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.638-644
    • /
    • 2010
  • Numerical predictions of a fully developed turbulent flow through a square duct ($30mm{\times}30mm$) with twisted tape inserts and with twisted tape plus interrupted ribs are respectively conducted to investigate regionally averaged heat transfer and flow patterns. A rib height-to-channel hydraulic diameter(e/$D_h$) of 0.067 and a lengthto-hydraulic diameter(L/$D_h$) of 30 are considered at Reynolds number ranging 8,900 to 29,000. The interrupted ribs are axially arranged on the bottom wall. The twisted tape is 0.1 mm thick carbon steel sheet with diameter of 28 mm, length of 900 mm, and 2.5 turns. Each wall of the square channel is composed of isolated aluminum sections. Two heating conditions are investigated for test channels with twisted tape inserts and rib turbulators: (1) electric heat uniformly applied to four side walls of the square duct, and (2) electric heat uniformly applied to two opposite walls of the square channel. The results show that uneven surface heating enhances the heat transfer coefficient over uniform heating conditions, and significant improvements can be achieved with twisted tape inserts plus interrupted ribs.

A Study on the Conditions of Drying Efficiency for Conveyor-Belt-Type Dryers Employing Continuous Decompression Indirect Heating Method (연속 감압-간접열 방식의 벨트형 건조장치를 이용한 건조효율 연구)

  • Ha, Sang-An;Kim, Dong-Kyun;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.54-60
    • /
    • 2015
  • The objective of this study is to develop a belt-type dryer with a capacity of 1 ton/day, thereby improving drying efficiency by more than 70% and reducing the size of dryers by more than 50%, and thus making dryers smaller and lighter to reduce the installation and operation costs by more than 20%. We identified structural improvements by analyzing existing dryers employing indirect heating and verified the superior drying performance of the proposed method through some basic experiments. Furthermore, we verified the improvements in the heat transfer and drying characteristics as we conducted the experiments at reduced pressure.

Numerical Analysis for Heat Transfer Characteristics of Elliptic Fin-Tube Heat Exchanger with Various Shapes (다양한 형상에 따른 타원형 핀-튜브 열교환기의 열전달 특성에 관한 수치해석)

  • Yoo, Jae Hwan;Yoon, Jun Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.367-375
    • /
    • 2013
  • In this study, the characteristics of the heat transfer coefficient and pressure drop were numerically analyzed according to the axis ratio (AR), pitch, location of vortex generator, and bump phase of the tube surface about an elliptical fin-tube heat exchanger. The boundary condition for CFD analysis was decided as a tube surface temperature of 348 K and inlet air velocity of 1-5 m/s. RSM 7th turbulent model was chosen as the numerical analysis for the sensitivity level. The analysis results indicated that the AR and transverse pitch decreased whereas the heat transfer coefficient increased. On the other hand, there was little difference in the longitudinal pitch. Furthermore, the heat transfer rate was more favorable when the vortex generator was located in front of the tube. Also, the bump phase of the tube surface indicated that the pressure drop and heat transfer were more favorable with the circle type than with the serrated type.

Performance of a Latent Heat Storage System Using Two-Phase Closed Thermosyphon(I) - the Case of Constant Heat Input - (열싸이폰을 이용한 잠열축열시스템의 성능실험(I) - 열주입량이 일정한 경우 -)

  • Kim, Tae-Il;Kim, Ki-Hyun
    • Solar Energy
    • /
    • v.12 no.3
    • /
    • pp.28-36
    • /
    • 1992
  • The performance of a latent heat storage system using a thermosyphon as the heat transfer device between the heat source and the phase change material was investigated experimentally. In order to increase the effective conductivity of the phase change material, layers of copper wire mesh were immersed in the paraffin wax(Sunoco P-116) in such a way that they also may be considered as fins of the thermosyphon. The important results are as follows : (1) The void space of the wire mesh allowed the convection to occur, thus enhanced the performance of the system : (2) The increase of the number of layer of wire mesh increased the conduction heat transfer. However, it also had adverse effect of subduing convective motion of liquid wax : and (3) Overall heat transfer coefficient and thermosyphon conductance increased with the increase of the number of layer of wire mesh, whereas the heat transfer coefficient between the thermosyphon and the wax decreased.

  • PDF