• Title/Summary/Keyword: 열적 안전성

Search Result 146, Processing Time 0.026 seconds

Convergence Study on the Thermal Stress According to the Structure of Automotive Heating Seat (자동차 난방 시트의 구조에 따른 열응력 해석에 대한 융합 연구)

  • Choi, Gye-Gwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.7
    • /
    • pp.169-174
    • /
    • 2019
  • Because the warm and cozy demand of automotive driving seat increases, the research development of heating seat has been actively made. In this study, the thermal stress analysis and the structural analysis were carried out with three kinds of heating seats of A, B and C. By executing the thermal analysis with the same material, model A was shown to have the heat transfer better than model B or model C at the study result. So, it could be seen that the heat transfers became different each other though models had the same material according to the configuration of product. Adding the hot wire in order to expect the safer heating can be better heating, but there is the limit on the aspect considering the capability in contrast to the price of product. Generally, model B is thought to be safest thermally than model A or model C in every respect. As the design data of the automotive heating seat product with the durability and safety acquired by this study result are used, the artistic environment can be promoted by being grafted onto the automotive driving seat.

Construction of integrated DB for domestic water-cycle system and short-term prediction model (생활용수 물순환 계통 통합 DB 및 단기예측모형 구축)

  • Seungyeon Lee;Sangeun Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.362-362
    • /
    • 2023
  • 한정된 수자원의 이용 및 관리로 매년 물 부족과 물 배분 의사결정 문제가 발생하고 있다. 50년간(1965~2014년) 수자원의 총량은 약 1.2배 증가한 반면 인구수 약 1.8배, 생·공·농업용수의 수요는 약 5배가 증가(국회입법조사처, 2018) 했을 뿐 아니라, 기후변화의 영향으로 인한 강수량의 변화와 지역별 편차가 커져 지속가능한 물관리 필요성이 증대되고 있다. 따라서 효율적인 물관리를 위해서는 관리부처가 분절되어 있는 물순환 계통의 데이터를 통합하는 것이 우선시되어야 하고 이를 통해 물순환 모니터링/평가/예측 기술을 개발할 수 있다. 본 연구에서는 생활용수 물순환 계통 통합 DB를 정의 및 구축하였다. 도시의 관점에서 물순환 시스템을 순차적으로 물 유입(수원~취수장)/전달(정수장~급수지역)/유출(하(폐)수처리장~방류구)의 개념으로 설정하고 DB정의서를 마련하였다. 연구대상지는 가뭄이 장기화가 되고 있는 전라남도중 물순환 계통이 비교적 단순한 네트워크로 형성되어 있는 함평군 도시지역으로 선정하였다. 연구 기간은 총 5년(2017년 1월 1일~2021년 12월 31일)이고 일 단위 실계측자료 위주의 원자료를 구축하였다. 이를 이상치 탐지, 제거, 대체의 과정을 거쳐 품질 보정하고 정제된 시계열 자료에 대한 특성 분석을 하였다. 그 결과, 물순환 계통 내 주요 지점 간의 상관관계 및 지연시간을 통한 물흐름의 시계열적 특성을 파악할 수 있었으며 모형의 적합도를 판단하는 데 활용되는 통계량과 유의미하지 않은 잔차의 자기상관성을 볼 때 물 유입-전달-유출의 단기 예측을 위한 ARIMA(Auto-regressive Integrated Moving Average) 모형의 구축도 가능할 것으로 판단되었다. 다만 여름철 발생하는 방류량의 첨두값을 설명하기 위해서는 강우에 의한 불명수 발생으로 증가하는 방류량을 묘사할 수있어야 하므로 향후에는 물순환계통 외 해당 지역의 불명수(강우 효과)도 하수 방류량의 주요 입력 요인으로 추가 검토할 필요가 있다.

  • PDF

Dependence of Thermal and Electrochemical Properties of ceramic Coated Separators on the Ceramic Particle Size (알루미나 크기에 따른 세라믹 코팅 분리막의 열적 특성 및 전기화학적 특성)

  • Park, Sun Min;Yu, Ho Jun;Kim, Kwang Hyun;Kang, Yun Chan;Cho, Won Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.2
    • /
    • pp.27-33
    • /
    • 2017
  • Conventional lithium ion batteries suffer from notorious safety issues caused by inevitable lithium dendrite formation and proliferation during over/fast charging processes. The lithium dendrites or mechanical damage on the separator induce internal short circuit in LiB that generates extensive amount of heat within contacted electrode surfaces through the separator. During this heat generation, conventional polyolefin separators shrinks dramatically, and increasing short circuit pathway, that causes the battery to explode. To overcome this serious issue, ceramic coated separators are developed in commercial LiB to enhance thermal and mechanical stability. In this paper, various size(IL = 488.5 nm, I = 538.7 nm, S = 810.3 nm, D = 1533.3 nm) of $Al_2O_3$ particles are coated using styrene-butadiene rubber(SBR) / carboxymethyl cellulose(CMC) binder on PE separator to investigate its thermal stability and electrochemical effect on LiB coin cell with NCM cathode and Li metal anode.

Heat Transfer Analysis around Transport Cask under Transport Hood (사용후핵연료 운반용기 덮개 내부 열전달 해석)

  • Lee, Dong-Gyu;Park, Jae-Ho;Jung, In-Su;Kim, Tae-Man;Yoon, Jeong-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.161-167
    • /
    • 2011
  • In case that the maximum temperature of any surface readily accessible during transport of a spent nuclear fuel (SNF) transport cask exceeds $85^{\circ}C$ in the absence of insolation under the ambient temperature of $38^{\circ}C$, personnel barriers or transport hood shall be used to prevent people from casual contact with the transport cask surface. Usually the air temperature within the hood and the hood surface temperature are calculated and further utilized as boundary conditions(free stream temperature and external radiation temperature) for thermal evaluation under normal conditions of transport. In this study, these temperatures are derived using the analytical method based on the heat transfer mechanism around the transport cask under transport hood assuming the thermal equilibrium. By comparing the analytical solutions with the results from the detailed calculations with CFD-computer-code FLUENT 12.1 it is verified that the analytical method is still efficient tool to estimate the temperatures and these temperatures can be further used as boundary conditions for thermal evaluation under normal conditions of transport.

Lean Burn de-NOx Properties of Pt-TiO2 Bifunctioncal Catalyst by Propylene (희박연소 상태에서 프로필렌 환원제에 의한 Pt-TiO2 이원기능 촉매의 NOx 제거 특성)

  • Jeong, Tae-Seop;Chae, Soo-Cheon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.511-521
    • /
    • 2000
  • Investigation was carried out lean burn de-NOx properties of Pt-$TiO_2$ bifunctional catalyst by propylene in order to get the high de-NOx activity and the wide temperature window under coexistence of $SO_2$ and $H_2O$. Only noncatalyst and carrier catalyst themselves had NOx conversion activity at high temperature over $400^{\circ}C$. NOx conversion activity of catalysts exchanged copper ion resulted in Cu-$TiO_2$>Cu-ZSM-5>Cu-$Al_2O_3$>CU-YZ>Cu-AZ. Catalysts impregnated with platinum based on titania gave the results of high NOx conversion activity at low temperature. $250^{\circ}C$. Bifunctional catalysts based on Pt-$TiO_2$ showed high NOx conversion activity both at a low zone of $300^{\circ}C$ and a high zone of $500^{\circ}C$. Pt-$TiO_2$/$Al_2O_3$ catalyst gave the highest NOx conversion activity at a low temperature zone. and Pt-$TiO_2$/$Mn_2O_3$(21) catalyst gave the highest NOx conversion activity at a high temperature zone. Under the coexistence of $SO_2$ and $H_2O$. NOx conversion activities of 0.55wt%Pt-$TiO_2$/5wt%Cu-ZSM-5 catalyst was high both at a low and high temperature zone, and increased depending on oxygen concentration. 0.55wt%Pt-$TiO_2$/5wt%Cu-ZSM-5 catalyst showed the best correlation between de-NOx activities and the propyl ere conversion rates to CO on the log function.

  • PDF

Analysis of Infrared Characteristics According to Common Depth Using RP Images Converted into Numerical Data (수치 데이터로 변환된 RP 이미지를 활용하여 공동 깊이에 따른 적외선 특성 분석)

  • Jang, Byeong-Su;Kim, YoungSeok;Kim, Sewon;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.77-84
    • /
    • 2024
  • Aging and damaged underground utilities cause cavity and ground subsidence under roads, which can cause economic losses and risk user safety. This study used infrared cameras to assess the thermal characteristics of such cavities and evaluate their reliability using a CNN algorithm. PVC pipes were embedded at various depths in a test site measuring 400 cm × 50 cm × 40 cm. Concrete blocks were used to simulate road surfaces, and measurements were taken from 4 PM to noon the following day. The initial temperatures measured by the infrared camera were 43.7℃, 43.8℃, and 41.9℃, reflecting atmospheric temperature changes during the measurement period. The RP algorithm generates images in four resolutions, i.e., 10,000 × 10,000, 2,000 × 2,000, 1,000 × 1,000, and 100 × 100 pixels. The accuracy of the CNN model using RP images as input was 99%, 97%, 98%, and 96%, respectively. These results represent a considerable improvement over the 73% accuracy obtained using time-series images, with an improvement greater than 20% when using the RP algorithm-based inputs.

Simulation of Asymmetric Fuel Thermal Behavior Using 3D Gap Conductance Model (3 차원 간극 열전도도 모델을 이용한 핵연료봉의 열적 비대칭 거동 해석)

  • Kang, Chang Hak;Lee, Sung Uk;Yang, Dong Yol;Kim, Hyo Chan;Yang, Yong Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.249-257
    • /
    • 2015
  • A fuel assembly consists of fuel rods composed of pellets (UO2) and a cladding tube (Zircaloy). The role of the fuel rods in the reactor is to generate heat by nuclear fission, as well as to retain fission products during operation. A simulation method using a computer program was used to evaluate the safety of the nuclear fuel rods. This computer program has been called the fuel performance code. In the analysis of a light water reactor fuel rod, the gap conductance, which depended on the distance between the pellets and cladding tube, mainly influenced the thermomechanical behavior of the fuel rod. In this work, a 3D gap element was proposed to simulate the thermo-mechanical behavior of the nuclear fuel rod, considering the gap conductance. To implement the proposed 3D gap element, a 3D thermo-mechanical module was also developed using FORTRAN90. The asymmetric characteristics of the nuclear fuel rod, such as the MPS (missing pellet surface) and eccentricity, were simulated to evaluate the proposed 3D gap element.

Accelerated Formation of Surface Films on the Degradation of LiCoO2 Cathode at High Temperature (표면 피막 형성이 LiCoO2 양극의 고온 열화에 미치는 영향)

  • Sung, Jong Hun;Hasan, Fuead;Yoo, Hyun Deog
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.3
    • /
    • pp.57-65
    • /
    • 2020
  • It is crucial to investigate the thermal degradation of lithium-ion batteries (LIBs) to understand the possible malfunction at high temperature. Herein, we investigated the effects of surface film formation on the thermal degradation of lithium cobalt oxide (LiCoO2, LCO) cathode that is one of representative cathode materials. Cycling test at 60℃ exhibited poorer cycleability compared with the cycling at 25℃. Cathodes after the initial 5 cycles at 60℃ (60-LCO) exhibited higher impedance compared to the cathode after initial 5 cycles at 25℃ (25-LCO), resulting in the lower rate capability upon subsequent cycling at 25℃, although the capacity values were similar at the lowest C-rate of 0.1C. In order to understand degradation of the LCO cathode at the high temperature, we analyzed the cathodes surface using X-ray photoelectron spectroscopy (XPS). Among various peaks, intensity of lithium hydroxide (LiOH) increased substantially after the operation at 60℃, and the C-C signal that represents the conductive agent was distinctly lower on 60-LCO compared to 25-LCO. These results pointed to an excessive formation of cathode-electrolyte interphase including LiOH at 60℃, leading to the increase in the resistance and the resultant degradation in the electrochemical performances.

Evaluation of Fracture Toughness in Steel Weldment for Inner Wall of LNG Storage Tank (LNG 저장탱크 내조용 강 용접부의 파괴인성 평가)

  • Jang J.-i.;Ju J.-B.;Yang Y.-c.;Kim W.-s.;Hong S. H.;Kwon D.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.7-13
    • /
    • 1998
  • In this study, for the safety performance of LNG storage tank, the fracture toughness in X-grooved weld HAZ(heat-affected zone) of $9\%$ Ni steel was evaluated qualitatively and quantitatively, and the relation with the change in microstructure was analyzed. The toughness assessment was peformed through the modified CTOD test proposed for thick weldment with X-groove. Additionally, microstructures of HAZ were evaluated by OM, SEM and XRD. From the results, HAZ toughness of SMA(shielded metal arc)-welded $9\%$ Ni steel decreased as the evaluated region approached the fusion line. The decrease in toughness was apparently caused by the increase in the fraction of coarse-grained zone within HAZ. On the other hand, toughness drop with decreasing test temperature in F.L.(fusion line) ${\~}$F.L.+3mm was larger than that in F.L.+5mm${\~}$F.L.+7mm region due to the fact that in the former regions, retained austenite had poor stability.

  • PDF

Enhanced Cycle Performance of Bi-layer Structured LMO-NCM Positive Electrode at Elevated Temperature (겹층구조의 LMO-NCM 복합양극을 통한 고온 사이클 수명개선 연구)

  • Yoo, Seong Tae;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.184-190
    • /
    • 2022
  • Spinel LiMn2O4 (LMO) and layered LiNi0.5Co0.2Mn0.3O2 (NCM) are widely used as positive electrode materials for lithium-ion batteries. LMO and NCM positive electrode materials have a complementary properties. LMO has low cost and high safety and NCM materials show a relatively high specific capacity and better cycle life even at elevated temperature. Therefore, the LMO and NCM active materials are blended and used as a positive electrode in large-size batteries for electric vehicles (xEV). In this study, the cycle performance of a blended electrode prepared by simply mixing LMO and NCM and a bi-layer electrode in which two electrode layers aree sequentially coated are compared. The bi-layer electrode prepared by composing the same ratio of both active materials has similar capacity and cycle performance to the blend electrode. However, the LN electrode coated with LMO first and then NCM is the best in the full cell cycle performance at elevated temperature, and the NL electrode, in which NCM is first coated with LMO has a faster capacity degradation than the blended electrode because LMO is mainly located on the top of the electrode adjacent to electrolyte and graphite negative electrode. Also, the LSTA (linear sweep thermmametry) analysis results show that the LN bi-layer electrode in which the LMO is located inside the electrode has good thermal stability.