• Title/Summary/Keyword: 열적

Search Result 4,289, Processing Time 0.028 seconds

A Study on the Modification of NH4+Y-zeolite for Improving Adsorption/Desorption Performance of Benzene (NH4+Y-zeolite의 개질을 통한 벤젠 흡·탈착 성능 증진 연구)

  • Jang, Young Hee;Noh, Young Il;Lee, Sang Moon;Kim, Sung Su
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • A.C (activated carbon) is mainly used to remove VOCs (volatile organic compounds), however, it has many problems such as fire risk due to increasing of adsorbent surface temperature during VOCs ad/desorption, increased cost by frequent replacement cycles requirement and performance degradation when containing moisture. In order to solve these problems, many researches, hydrophobic zeolite adsorbents, have been reported. In this study, $NH_4{^+}Y$-zeolite was synthesized with Y-zeolite through steam treatment and acid treatment, which is one of the hydrophobic modification methods, to secure high surface area, thermal stability and humidity resistance. The Y, Y-550-HN, Y-600-HN and Y-650-HN had adsorption capacities of $23mg\;g^{-1}$, $38mg\;g^{-1}$, $77mg\;g^{-1}$, $61mg\;g^{-1}$. The change of Si/Al ratio, which is an index to confirm the degree of modification, was confirmed by XRF (X-ray fluorescence spectrometer) analysis. As a result, the adsorbtion performance was improved when Y-zeolite modified, and the Si/Al ratio of Y, Y-550-HN, Y-600-HN, Y-650-HN were increased to 3.1765, 6.6706, 7.3079, and 7.4635, respectively. Whereas it was confirmed that structural crystallization due to high heat treatment temperature affected performance degradation. Therefore, there is an optimal heat treatment temperature of Y-zeolite, optimum modification condition study could be a substitute for activated carbon as a condition for producing an adsorbent having high durability and stability.

Identification of Synthesized Pitch Derived from Pyrolyzed Fuel Oil (PFO) by Pressure (석유계 잔사유(PFO)의 피치 합성 시 압력조건에 따른 피치 특성 변화)

  • Seo, Sang Wan;Kim, Ji Hong;Lee, Young-Seak;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.652-656
    • /
    • 2018
  • In this study, effects of the reaction pressure were studied for petroleum-based pitch synthesis. A two-stage reaction process was performed based on different reaction pressure conditions. Each stage experiments for the two-stage reaction were consecutively carried out. The first stage was consisted of three different pressure conditions; high (10 bar), normal and low (0.1 bar). And the second stage was carried out at the normal and low (0.1 bar) pressure. The pitch synthesis was realized at $400^{\circ}C$ for 2 h. Thermal properties and molecular weight distributions of each samples were investigated by analyzing the softening point and MALDI-TOF data. Volatilized components during the pith synthesis were measured by GC-SIMDIS. In case of the first-step reaction with the high pressure condition, the low molecular weight component participated to the pitch formation more effectively and the pitch with the low softening point was obtained. However, for the case of the first-step with the low pressure, the low molecular weight component was vent outside and the partial coke formation occurred. Eventually, pitch properties such as the softening point and yield were controlled effectively by changing the pressure in the pitch synthesis reaction.

Investigation of Death Years and Inter-annual Growth Reduction of Korean Firs (Abies Koreana) at Yeongsil in Mt. Halla (한라산 영실지역 구상나무 고사연도와 시계열적 생육쇠퇴도 조사)

  • Seo, Jeong-Woo;Kim, Yo-Jung;Choi, En-Bi;Park, Jun-Hui;Kim, Jae-Hoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.3
    • /
    • pp.1-14
    • /
    • 2019
  • With a view to developing a database of death years of Korean firs (Abies koreana) at Yeongsil in Mt. Halla and investigating their abrupt inter-annual growth reduction tree-ring analysis was employed. To this end, 10 living trees (YSL) were selected to establish a master chronology and 20 dead trees were used to date their dead years. To investigate the difference in death years by death types, 10 trees, which remained standing (YSSD) out of the 20 dead trees were selected. The rest 10 dead trees were already fallen (YSFD). Two increment cores per tree at breast height were extracted in contour direction using an increment borer. A 106-year master chronology (1911-2016) was successfully established from the 10 YSLs. Through cross-dating between individual YSSD time series and the master chronology, it was verified that 1 YSSD was dead in summer 1978, 1 YSSD between autumn 1999 and spring 2000, 2 YSSDs in summer 2007, 1 YSSD in summer 2010, 1 YSSD in summer 2012, and 1 YSSD in summer 2013. The youngest tree rings of 2 YSSDs having no bark were in 1977 and 2002. For the YSFDs, it was verified that 1 YSFD was dead between autumn 1997 and spring 1998, 1 YSFD between autumn 2001 and spring 2002, 2 YSFDs between autumn 2009 and spring 2010, 1 YSFD in summer 2010, and 2 YSFDs between autumn 2012 and spring 2013, while the youngest tree rings of 2 YSFDs having no bark were in 1989 and 2004. To note, the death years of two trees, one from each death type (YSSD and YSFD), could not be verified due to poor cross-dating with the master chronology. The inter-annual growth reductions of YSSD and YSFD occurred more frequently and intensively than YSL. Typically, the YSFD showed the most frequent and intensive inter-annual growth reduction. On comparing the inter-annual growth reductions with the corresponding records of typhoons however we could not find any reliable relationship. Finally, from prior reports and results of the current study it can be concluded that the death and abrupt growth reduction of korean fir at Yeongsil in Mt. Halla are not caused by only a certain environmental factor but various factors.

Evaluation of Coconut Oil-based Emulsion Stability Using Tween-Span Type Nonionic Mixed Surfactant (Tween-Span계 비이온성 혼합계면활성제를 이용한 Coconut Oil 원료 유화액의 유화안정성 평가)

  • Hong, Seheum;Zhu, Kaiyang;Zuo, Chengliang;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.453-459
    • /
    • 2019
  • In this study, the influence factors on the stability of the O/W (oil in water) emulsions prepared with coconut oil and the nonionic mixed surfactant (Tween 80-Span 80) were evaluated. The concentration and HLB value of the nonionic mixed surfactant, and the degree of agitation were used as manufacture factors. The stability of prepared O/W emulsions were measured with the mean droplet size, zeta-potential, emulsion stability index (ESI), and thermal instability index (TII). The mean droplet size of the prepared O/W emulsions was from 100 to 200 nm. As the concentration of mixed surfactant and the homogenization speed increased, the droplet sizes decreased, while the zeta-potential values increased. The effect of HLB values increased in the order of 6.0, 10.0 and 8.0, and at the HLB value of 8 the smallest mean droplet size as 120 nm was obtained whereas the largest value of the zeta-potential between 10 and 60 mV. From the results of ESI and TII, the stability of prepared O/W emulsions increased in order of 6.0, 10.0 and 8.0 of HLB values, and ESI and TII values were above 80% and below 20% respectively at HLB value of 8.0.

Effect of Hatching and Brooding Season of Chicks on Their Heat Stress Response and Production Performances (병아리의 발생시기 및 육성계절이 열 스트레스 반응과 생산능력에 미치는 영향)

  • Cho, Eun Jung;Choi, Eun Sik;Sohn, Sea Hwan
    • Korean Journal of Poultry Science
    • /
    • v.46 no.2
    • /
    • pp.77-86
    • /
    • 2019
  • This study was conducted to compare the heat stress response and production performance of chicks hatched in winter and summer. Among the 2,090 Korean native chickens examined, 1,156 hatched in winter and 934 hatched in summer. The amount of telomeric DNA, the expression of heat shock protein (HSP) genes, survival rate, egg production, and body weight were analyzed to evaluate the stress response and production performance of chickens. The results showed that the expression of HSP-70, $HSP-90{\alpha}$, and $HSP-90{\beta}$ genes in the winter-hatched chickens were significantly higher than those in the summer-hatched chickens during the growing and laying period (P<0.05). There was no significant difference in the amount of telomeric DNA between summer- and winter-hatched chickens. The survival rate was significantly higher in the summer-hatched chickens than in the winter-hatched chickens at the laying period (P<0.01). The hen-day egg production and egg weight in the summer-hatched chickens were also significantly higher than those in the winter-hatched chickens (P<0.05). In contrast, age of sexual maturity of winter-hatched chickens was significantly earlier than that of summer-hatched chickens (P<0.01). The body weights from birth to 24 weeks were significantly lighter in the summer-hatched chickens than in the winter-hatched chickens, however, it was reversed after 28 weeks (P<0.05). In conclusion, the chicks hatched in the summer are more resistant to heat stress, with better productivity than the chicks hatched in the winter. These results suggest that the chicks grown at high temperatures have greater adaptability to the thermal environment.

Design and Performance Evaluation of Integral-type Hot BoP for Recovering High-temperature Exhaust Gas in 2 kW Class SOFC (2 kW급 고체산화물연료전지의 고온배기가스 폐열회수를 위한 일체형 Hot BoP의 설계 및 성능 평가)

  • Kim, Young Bae;Kim, Eun Ju;Yoon, Jonghyuk;Song, Hyoungwoon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.62-67
    • /
    • 2019
  • This study was focused on the design and the performance analysis of integral Hot BoP for recovering waste heat from high-temperature exhaust gas in 2 kW class solid oxide fuel cell (SOFC). The hot BoP system was consisted of a catalytic combustor, air preheater and steam generator for burning the stack exhaust gas and for recovering waste heat. In the design of the system, the maximum possible heat transfer was calculated to analyze the heat distribution processes. The detail design of the air preheater and steam generator was carried out by solving the heat transfer equation. The hot BoP was fabricated as a single unit to reduce the heat loss. The simulated stack exhaust gas which considered SOFC operation was used to the performance test. In the hot BoP performance test, the heat transfer rate and system efficiency were measured under various heat loads. The combustibility with the equivalent ratio was analyzed by measuring CO emission of the exhaust gas. As a result, the thermal efficiency of the hot BoP was about 60% based on the standard heat load of 2 kW SOFC. CO emission of the exhaust gas rapidly decreased at an equivalent ratio of 0.25 or more.

Numerical Analysis of the Temperature Distribution Considering the Wall Thermal Conductivity in Compartment Fire (구획 화재 시 벽면의 열적 특성을 고려한 온도분포 해석결과)

  • You, Woo Jun;Ko, Kwon Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.644-648
    • /
    • 2019
  • This study examined effects of the wall thermal conductivity coefficients on the thermal fluid phenomenon of a compartment fire. The reduced scale compartment was 0.4 m in width, 0.6 m in length and 0.6 m in height with a fire-board, which has a thermal conductivity coefficient of $0.18W/m{\cdot}K$. The local temperature at a 0.37 m height and the overall heat release rate were measured under the following experiment conditions: a $0.12m^2$ opening area and $0.01m^2$ pool size of a gasoline fire. The numerical results obtained by the Fire Dynamic Simulation were compared with the experimentally measured temperature. The deviations were within 10 % in the period of the steady state for maximum heat release rate (4.8 kW). The numerical results show that the average temperature of the compartment wall decreases by approximately 71 % with increasing thermal conductivity coefficient from $0.1W/m{\cdot}K$ to $100.0W/m{\cdot}K$ on the fixed heat release rate.

A Study on the Risk of Spontaneous ignition to Butadiene Popcorn Polymer (Butadiene Popcorn Polymer의 자연발화 위험성에 관한 연구)

  • Koo, Chae-Chil;Lee, Jung-Suk;Choi, Jae-Wook
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.1-8
    • /
    • 2019
  • This study was conducted to investigate the possibility of spontaneous ignition in Butadiene popcorn polymer, which is used as raw material and product in a chemical plant. A component analysis, thermogravimetric analysis, thermal stability analysis, spontaneous ignition point measurement and accelerated velocity calorimetric analysis were performed. As a result of analysis, various kinds of flammable components were measured and thermogravimetric analysis showed a weight loss of 95.6% in air and 89.2% in nitrogen. As a result of the thermal stability analysis, heat generation started at $88^{\circ}C$ in the air atmosphere, and the heat generation rate increased sharply in the vicinity of the natural ignition point ($220^{\circ}C$). The heat generation started at about $70^{\circ}C$ in nitrogen atmosphere, and the two exothermic peak values were observed up to $450^{\circ}C$. As a result of accelerated rate calorimetry, there was no exothermic phenomenon, and the lowest ignition temperature was $211.7^{\circ}C$ as a result of analysis of natural ignition point. Based on the results obtained from the thermal stability evaluation, it is considered that the possibility of inducing the thermal deformation of the column by the heat of reaction is sufficient.

Comparison of SqueeSAR Analysis Method And Level Surveying for Subsidence Monitoring at Landfill Site (매립지 지반침하 모니터링을 위한 SqueeSAR 해석법과 수준측량의 비교)

  • Kim, Dal-Joo;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.137-151
    • /
    • 2018
  • Recently, National interest has been rising due to earthquakes in Gyeongju and Pohang, disasters caused by landslides, landslides, and sinkholes around construction sites, and damage caused by disasters. SAR is able to detect ground displacement in mm for wide area, collect data through satellite, predict timeliness of crustal change by time series analysis, and reduce disaster and disaster damage. The purpose of this study is to investigate the latest SAR interference analysis technique (SqueeSAR analysis technique) of Sentinel-1A satellite (SAR sensor) of European ESA for about 3 years by selecting the 1st landfill site in the metropolitan area in Incheon, The settlement amount was calculated in a time series. Especially, in order to examine the accuracy of the subsidence and subsidence tendency by the SqueeSAR analysis method, the ground level survey was compared and analyzed for the first time in Korea. Also, the tendency of the subsidence trend was predicted by analyzing the time series and correlation trend of the subsidence for three years. Through this study, it is expected that disaster prevention and disaster prevention such as sinkhole and landslide can be utilized from time series monitoring of crustal variation of the land.

Distribution Analysis of Land Surface Temperature about Seoul Using Landsat 8 Satellite Images and AWS Data (Landsat 8 위성영상과 AWS 데이터를 이용한 서울특별시의 지표면 온도 분포 분석)

  • Lee, Jong-Sin;Oh, Myoung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.434-439
    • /
    • 2019
  • Recently, interest in urban temperature change and ground surface temperature change has been increasing due to weather phenomenon due to global warming, heat island phenomenon caused by urbanization in urban areas. In Korea, weather data such as temperature and precipitation have been collected since 1904. In recent years, there are 96 ASOS stations and 494 AWS weather observation stations. However, in the case of terrestrial networks, terrestrial meteorological data except measurement points are predicted through interpolation because they provide point data for each installation point. In this study, to improve the resolution of ground surface temperature measurement, the surface temperature using satellite image was calculated and its applicability was analyzed. For this purpose, the satellite images of Landsat 8 OLI TIRS were obtained for Seoul Metropolitan City by seasons and transformed to surface temperature by applying NASA equation to the thermal bands. The ground measurement data was based on the temperature data measured by AWS. Since the AWS temperature data is station based point data, interpolation is performed by Kriging interpolation method for comparison with Landsat image. As a result of comparing the satellite image base surface temperature with the AWS temperature data, the temperature difference according to the season was calculated as fall, winter, summer, based on the RMSE value, Spring, in order of applicability of Landsat satellite image. The use of that attribute and AWS support starts at $2.11^{\circ}C$ and RMSE ${\pm}3.84^{\circ}C$, which reflects information from the extended NASA.