• Title/Summary/Keyword: 열영상 카메라

Search Result 137, Processing Time 0.029 seconds

Depth Image Poselets via Body Part-based Pose and Gesture Recognition (신체 부분 포즈를 이용한 깊이 영상 포즈렛과 제스처 인식)

  • Park, Jae Wan;Lee, Chil Woo
    • Smart Media Journal
    • /
    • v.5 no.2
    • /
    • pp.15-23
    • /
    • 2016
  • In this paper we propose the depth-poselets using body-part-poses and also propose the method to recognize the gesture. Since the gestures are composed of sequential poses, in order to recognize a gesture, it should emphasize to obtain the time series pose. Because of distortion and high degree of freedom, it is difficult to recognize pose correctly. So, in this paper we used partial pose for obtaining a feature of the pose correctly without full-body-pose. In this paper, we define the 16 gestures, a depth image using a learning image was generated based on the defined gestures. The depth poselets that were proposed in this paper consists of principal three-dimensional coordinates of the depth image and its depth image of the body part. In the training process after receiving the input defined gesture by using a depth camera in order to train the gesture, the depth poselets were generated by obtaining 3D joint coordinates. And part-gesture HMM were constructed using the depth poselets. In the testing process after receiving the input test image by using a depth camera in order to test, it extracts foreground and extracts the body part of the input image by comparing depth poselets. And we check part gestures for recognizing gesture by using result of applying HMM. We can recognize the gestures efficiently by using HMM, and the recognition rates could be confirmed about 89%.

Terrain Cover Classification Technique Based on Support Vector Machine (Support Vector Machine 기반 지형분류 기법)

  • Sung, Gi-Yeul;Park, Joon-Sung;Lyou, Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.55-59
    • /
    • 2008
  • For effective mobility control of UGV(unmanned ground vehicle), the terrain cover classification is an important component as well as terrain geometry recognition and obstacle detection. The vision based terrain cover classification algorithm consists of pre-processing, feature extraction, classification and post-processing. In this paper, we present a method to classify terrain covers based on the color and texture information. The color space conversion is performed for the pre-processing, the wavelet transform is applied for feature extraction, and the SVM(support vector machine) is applied for the classifier. Experimental results show that the proposed algorithm has a promising classification performance.

Tangible Interaction : Application for A New Interface Method for Mobile Device -Focused on development of virtual keyboard using camera input - (체감형 인터랙션 : 모바일 기기의 새로운 인터페이스 방법으로서의 활용 -카메라 인식에 의한 가상 키보드입력 방식의 개발을 중심으로 -)

  • 변재형;김명석
    • Archives of design research
    • /
    • v.17 no.3
    • /
    • pp.441-448
    • /
    • 2004
  • Mobile devices such as mobile phones or PDAs are considered as main interlace tools in ubiquitous computing environment. For searching information in mobile device, it should be possible for user to input some text as well as to control cursor for navigation. So, we should find efficient interlace method for text input in limited dimension of mobile devices. This study intends to suggest a new approach to mobile interaction using camera based virtual keyboard for text input in mobile devices. We developed a camera based virtual keyboard prototype using a PC camera and a small size LCD display. User can move the prototype in the air to control the cursor over keyboard layout in screen and input text by pressing a button. The new interaction method in this study is evaluated as competitive compared to mobile phone keypad in left input efficiency. And the new method can be operated by one hand and make it possible to design smaller device by eliminating keyboard part. The new interaction method can be applied to text input method for mobile devices requiring especially small dimension. And this method can be modified to selection and navigation method for wireless internet contents on small screen devices.

  • PDF

Design of Aspheric Imaging Optical System having 24mm Focal Length for MWIR with Facing Symmetric Lenses (마주보는 대칭렌즈를 가지는 MWIR용 초점거리 24mm의 비구면 결상광학계 설계)

  • Lee, Sang-Kil;Kim, Boo-Tae;Lee, Dong-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.9
    • /
    • pp.183-189
    • /
    • 2018
  • This study deals with the design and development of imaging optics having 24mm focal length for MWIR ($3{\sim}5{\mu}m$) with two symmetrical lenses facing each other. We used CodeV in our optical design, and we performed the optimization process to have the resolution and angle of view satisfying the user's requirements. The materials of lenses were limited to two types, including KCIR035 with a refractive index of 1.7589, developed in Korea. The optical system designed in this way consists of two aspherical lenses made of KCIR035 material having the same shape and one spherical lens made of Si. Here, the arrangement of the two aspherical lenses is characterized by having a symmetrical structure facing each other. And this optical system has a resolution of MTF value of 0.35 or more at a line width of 20 lp / mm. Therefore, it is considered that this optical system has the capability to be applied to a thermal imaging camera using a $206{\times}156$ array MWIR detection device having a pixel size of $25{\mu}m$.

Performance Analysis of Object Detection Neural Network According to Compression Ratio of RGB and IR Images (RGB와 IR 영상의 압축률에 따른 객체 탐지 신경망 성능 분석)

  • Lee, Yegi;Kim, Shin;Lim, Hanshin;Lee, Hee Kyung;Choo, Hyon-Gon;Seo, Jeongil;Yoon, Kyoungro
    • Journal of Broadcast Engineering
    • /
    • v.26 no.2
    • /
    • pp.155-166
    • /
    • 2021
  • Most object detection algorithms are studied based on RGB images. Because the RGB cameras are capturing images based on light, however, the object detection performance is poor when the light condition is not good, e.g., at night or foggy days. On the other hand, high-quality infrared(IR) images regardless of weather condition and light can be acquired because IR images are captured by an IR sensor that makes images with heat information. In this paper, we performed the object detection algorithm based on the compression ratio in RGB and IR images to show the detection capabilities. We selected RGB and IR images that were taken at night from the Free FLIR Thermal dataset for the ADAS(Advanced Driver Assistance Systems) research. We used the pre-trained object detection network for RGB images and a fine-tuned network that is tuned based on night RGB and IR images. Experimental results show that higher object detection performance can be acquired using IR images than using RGB images in both networks.

A Study on the Measurement of Respiratory Rate Using Image Alignment and Statistical Pattern Classification (영상 정합 및 통계학적 패턴 분류를 이용한 호흡률 측정에 관한 연구)

  • Moon, Sujin;Lee, Eui Chul
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.10
    • /
    • pp.63-70
    • /
    • 2018
  • Biomedical signal measurement technology using images has been developed, and researches on respiration signal measurement technology for maintaining life have been continuously carried out. The existing technology measured respiratory signals through a thermal imaging camera that measures heat emitted from a person's body. In addition, research was conducted to measure respiration rate by analyzing human chest movement in real time. However, the image processing using the infrared thermal image may be difficult to detect the respiratory organ due to the external environmental factors (temperature change, noise, etc.), and thus the accuracy of the measurement of the respiration rate is low.In this study, the images were acquired using visible light and infrared thermal camera to enhance the area of the respiratory tract. Then, based on the two images, features of the respiratory tract region are extracted through processes such as face recognition and image matching. The pattern of the respiratory signal is classified through the k-nearest neighbor classifier, which is one of the statistical classification methods. The respiration rate was calculated according to the characteristics of the classified patterns and the possibility of breathing rate measurement was verified by analyzing the measured respiration rate with the actual respiration rate.

The Improvement of the LIDAR System of the School Zone Applying Artificial Intelligence (인공지능을 적용한 스쿨존의 LIDAR 시스템 개선 연구)

  • Park, Moon-Soo;Park, Dea-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1248-1254
    • /
    • 2022
  • Efforts are being made to prevent traffic accidents in the school zone in advance. However, traffic accidents in school zones continue to occur. If the driver can know the situation information in the child protection area in advance, accidents can be reduced. In this paper, we design a camera that eliminates blind spots in school zones and a number recognition camera system that can collect pre-traffic information. It is designed by improving the LIDAR system that recognizes vehicle speed and pedestrians. It collects and processes pedestrian and vehicle image information recognized by cameras and LIDAR, and applies artificial intelligence time series analysis and artificial intelligence algorithms. The artificial intelligence traffic accident prevention system learned by deep learning proposed in this paper provides a forced push service that delivers school zone information to the driver to the mobile device in the vehicle before entering the school zone. In addition, school zone traffic information is provided as an alarm on the LED signboard.

Design and Analysis of Coaxial Optical System for Improvement of Image Fusion of Visible and Far-infrared Dual Cameras (가시광선과 원적외선 듀얼카메라의 영상 정합도 향상을 위한 동축광학계 설계 및 분석)

  • Kyu Lee Kang;Young Il Kim;Byeong Soo Son;Jin Yeong Park
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.3
    • /
    • pp.106-116
    • /
    • 2023
  • In this paper, we designed a coaxial dual camera incorporating two optical systems-one for the visible rays and the other for far-infrared ones-with the aim of capturing images in both wavelength ranges. The far-infrared system, which uses an uncooled detector, has a sensor array of 640×480 pixels. The visible ray system has 1,945×1,097 pixels. The coaxial dual optical system was designed using a hot mirror beam splitter to minimize heat transfer caused by infrared rays in the visible ray optical system. The optimization process revealed that the final version of the dual camera system reached more than 90% of the fusion performance between two separate images from dual systems. Multiple rigorous testing processes confirmed that the coaxial dual camera we designed demonstrates meaningful design efficiency and improved image conformity degree compared to existing dual cameras.

Weighted Disassemble-based Correction Method to Improve Recognition Rates of Korean Text in Signboard Images (간판영상에서 한글 인식 성능향상을 위한 가중치 기반 음소 단위 분할 교정)

  • Lee, Myung-Hun;Yang, Hyung-Jeong;Kim, Soo-Hyung;Lee, Guee-Sang;Kim, Sun-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.2
    • /
    • pp.105-115
    • /
    • 2012
  • In this paper, we propose a correction method using phoneme unit segmentation to solve misrecognition of Korean Texts in signboard images using weighted Disassemble Levenshtein Distance. The proposed method calculates distances of recognized texts which are segmented into phoneme units and detects the best matched texts from signboard text database. For verifying the efficiency of the proposed method, a database dictionary is built using 1.3 million words of nationwide signboard through removing duplicated words. We compared the proposed method to Levenshtein Distance and Disassemble Levenshtein Distance which are common representative text string comparison algorithms. As a result, the proposed method based on weighted Disassemble Levenshtein Distance represents an improvement in recognition rates 29.85% and 6% on average compared to that of conventional methods, respectively.

Multi-View Video System using Single Encoder and Decoder (단일 엔코더 및 디코더를 이용하는 다시점 비디오 시스템)

  • Kim Hak-Soo;Kim Yoon;Kim Man-Bae
    • Journal of Broadcast Engineering
    • /
    • v.11 no.1 s.30
    • /
    • pp.116-129
    • /
    • 2006
  • The progress of data transmission technology through the Internet has spread a variety of realistic contents. One of such contents is multi-view video that is acquired from multiple camera sensors. In general, the multi-view video processing requires encoders and decoders as many as the number of cameras, and thus the processing complexity results in difficulties of practical implementation. To solve for this problem, this paper considers a simple multi-view system utilizing a single encoder and a single decoder. In the encoder side, input multi-view YUV sequences are combined on GOP units by a video mixer. Then, the mixed sequence is compressed by a single H.264/AVC encoder. The decoding is composed of a single decoder and a scheduler controling the decoding process. The goal of the scheduler is to assign approximately identical number of decoded frames to each view sequence by estimating the decoder utilization of a Gap and subsequently applying frame skip algorithms. Furthermore, in the frame skip, efficient frame selection algorithms are studied for H.264/AVC baseline and main profiles based upon a cost function that is related to perceived video quality. Our proposed method has been performed on various multi-view test sequences adopted by MPEG 3DAV. Experimental results show that approximately identical decoder utilization is achieved for each view sequence so that each view sequence is fairly displayed. As well, the performance of the proposed method is examined in terms of bit-rate and PSNR using a rate-distortion curve.