• Title/Summary/Keyword: 열역학적 함수

Search Result 116, Processing Time 0.025 seconds

Optimization of Ascorbic Acid Encapsulation in PLA Microcapsules Using Double Emulsion Process (이중유화법을 이용한 PLA 마이크로캡슐 내부로의 아스코르브산 캡슐화 공정 최적화)

  • Ji Won Yun;Young Mi Chung
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.115-121
    • /
    • 2024
  • This study analyzed the influence of process variables affecting the thermodynamic equilibrium and fluid dynamics of interfaces such as reverse micelle, salt concentration, interfacial tension, and viscosity of fluids to optimize the microencapsulation process using the W1/O/W2 double emulsion method. The process variable with the greatest impact on encapsulation efficiency was found to be the difference in osmotic pressure between the W1 and W2 phases. It was observed that increasing the salt concentration in the W2 phase or decreasing the ascorbic acid concentration in the W1 phase resulted in higher encapsulation efficiency. Additionally, a larger difference in osmotic pressure led to increased damage to the surface of the microparticles, as confirmed by SEM images. The introduction of reverse micelles, which was anticipated to increase encapsulation efficiency, either had a low contribution or even decreased encapsulation efficiency. The yield of microcapsules was expressed as a universal function, applicable to all process conditions or solution compositions. According to this universal function, no further increase in yield was observed beyond the Ca (capillary number) of approximately 20.

Computational Study of Energetic Salts Based on the Combination of Nitrogen-rich Heterocycles (질소가 풍부한 헤테로 고리화합물에 기초한 에너지 염의 고에너지 물질 성능에 대한 이론 연구)

  • Woo, Je-Hun;Seo, Hyun-Il;Kim, SeungJoon
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.3
    • /
    • pp.185-193
    • /
    • 2022
  • The theoretical investigation has been performed to predict thermodynamic stability, density, detonation velocity, and detonation pressure of energetic salts produced by pairing of nitrogen-rich anions (tetrazine, oxadiazole etc.) and cations (NH3OH+, NH2NH3+, CH9N6+, C2H6N5+). All possible geometries and the binding energy for the trigger bond of energetic salts have been optimized at the B3LYP/cc-pVDZ level of theory. The detonation velocity and detonation pressure have been calculated using Kamlet-Jacobs equation, while enthalpy has been predicted at the G2MP2 level of theory. The predicted results reveal that the energetic salts including small sized NH3OH+(1) and NH2NH3+(2) cations increase detonation property. And also the energetic salts including more amino group (-NH2) such as CH9N6+(3) cation increase thermodynamic stability. These results provide basic information for the development the high energy density materials (HEDMs).

Thermodynamics on the Micellization of Pure Cationic(DTAB, TTAB, CTAB), Nonionic(Tween-20, Tween-40, Tween-80), and Their Mixed Surfactant Systems (순수 양이온성(DTAB, TTAB, CTAB), 비이온성(Tween-20, Tween-40, Tween-80) 및 이들 혼합 계면활성제의 미셀화에 대한 열역학적 연구)

  • Lee, Nam-Min;Lee, Byung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.679-687
    • /
    • 2013
  • The critical micelle concentration (CMC) and counter-ion binding constant (B) of the pure cationic surfactants (DTAB, TTAB, CTAB), nonionic surfactants (Tween-20, Tween-40, Tween-80), and their mixed surfactants (TTAB/Tween-20, TTAB/Tween-40, TTAB/Tween-80) in aqueous solutions of 4-chlorobenzoic acid were determined by using the UV/Vis absorbance method and the conductivity method from 284 K to 312 K. Thermodynamic parameters (${\Delta}G^o{_m}$, ${\Delta}H^o{_m}$, and ${\Delta}S^o{_m}$), associated with the micelle formation of those surfactant systems, have been estimated from the dependence of CMC and B values on the temperature and carbon length of surfactant molecules. The calculated values of ${\Delta}G^o{_m}$ are all negative within the measured range but the values of ${\Delta}H^o{_m}$ and ${\Delta}S^o{_m}$ are positive or negative, depending on the length of the carbon chain and surfactant.

Adsorption Characteristics Analysis of 2,4-Dichlorophenol in Aqueous Solution with Activated Carbon Prepared from Waste Citrus Peel using Response Surface Modeling Approach (반응표면분석법을 이용한 폐감귤박 활성탄에 의한 수중의 2,4-Dichlorophenol 흡착특성 해석)

  • Lee, Chang-Han;Kam, Sang-Kyu;Lee, Min-Gyu
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.723-730
    • /
    • 2017
  • The batch experiments by response surface methodology (RSM) have been applied to investigate the influences of operating parameters such as temperature, initial concentration, contact time and adsorbent dosage on 2,4-dichlorophenol (2,4-DCP) adsorption with an activated carbon prepared from waste citrus peel (WCAC). Regression equation formulated for the 2,4-DCP adsorption was represented as a function of response variables. Adequacy of the model was tested by the correlation between experimental and predicted values of the response. A fairly high value of $R^2$ (0.9921) indicated that most of the data variation was explained by the regression model. The significance of independent variables and their interactions were tested by the analysis of variance (ANOVA) and t-test statistics. These results showed that the model used to fit response variables was significant and adequate to represent the relationship between the response and the independent variables. The kinetics and isotherm experiment data can be well described with the pseudo-second order model and the Langmuir isotherm model, respectively. The maximum adsorption capacity of 2,4-DCP on WCAC calculated from the Langmuir isotherm model was 345.49 mg/g. The rate controlling mechanism study revealed that film diffusion and intraparticle diffusion were simultaneously occurring during the adsorption process. The thermodynamic parameters indicated that the adsorption reaction of 2,4-DCP on WCAC was an endothermic and spontaneous process.

Mixed Micellizations of TTAB with Other Surfactants (DTAB, CTAB, Tween-20, Tween-40, and Tween-80) (TTAB와 다른 계면활성제(DTAB, CTAB, Tween-20, Tween-40 및 Tween-80)와의 혼합미셀화에 대한 연구)

  • Lee, Nam-Min;Lee, Byung-Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.5
    • /
    • pp.556-562
    • /
    • 2012
  • The critical micelle concentration (CMC) and the counter-ion binding constant (B) for the mixed micellizations of TTAB (tetradecyltrimethylammonium bromide) with other surfactants (DTAB, CTAB, Tween-20, Tween-40, and Tween-80) in aqueous solution of 4-chlorobenzoic acid (0.5 mM) at $25^{\circ}C$ were determined as a function of ${\alpha}_1$ (the overall mole fraction of TTAB) by using the spectrophotometric method and the conductivity method. Various thermodynamic parameters ($X_i$, ${\gamma}_i$, $C_i$, $a_i^M$, ${\beta}$, and ${\Delta}H_{mix}$) were calculated for each mixed surfactant system and compared with the other mixed surfactant systems by means of the equations derived from the nonideal mixed micellar model. The results show that TTAB/DTAB mixed system has a great positive deviation from the ideal mixed micellar model and the other mixed systems have great negative deviations from the ideal mixed model.

Study on the Solubilization of 4-Chlorobenzoic Acid by Aqueous Solutions of Various Cationic, Nonionic, and Mixed Surfactant Systems (양이온성, 비이온성 및 혼합성 계면활성제에 의한 4-클로로벤조산의 가용화에 대한 연구)

  • Lee, Nam-Min;Lee, Byung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.244-254
    • /
    • 2014
  • The interactions of 4-chlorobenzoic acid with the micellar system of various cationic, nonionic, and mixed surfactant systems were studied by the UV/Vis spectrophotometric method. The solubilization constants ($K_s$) of 4-chlorobenzoic acid into those micellar systems have been measured at various temperatures and various thermodynamic parameters for the solubilization of 4-chlorobenzoic acid have been calculated and analyzed from those changes. The results show that the values of ${\Delta}G^o_s$ are all negative within the measured temperature range and that the values of ${\Delta}H^o_s$ and ${\Delta}S^o_s$ are all positive. The effects of alkyl-group's length of surfactant molecules on the solubilization of 4-chlorobenzoic acid have been also measured. The values of $K_s$ were dependent simultaneously on the alkyl-group's length and the kind of head-group in surfactant molecules. From these changes we can postulate the solubilization site and the degree of interaction of 4-chlorobenzoic acid with the micellar systems.

Studies on the Complexes of Lanthanide ion with Multidentate Ligand (I). Determination of Thermodynamic Parameters with Solution Calorimetric Method in Nonaqueous Solvents (란탄족 원소의 여러자리 리간드 착물에 관한 연구 (제 1 보) 물아닌 용액에서 용액열량계에 의한 열역학적 함수결정)

  • Sam-Woo Kang;Won-Hae Koo;Soo-Min Lee;Chang Choo-Hwan;Moo-Yol Seo
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.588-595
    • /
    • 1989
  • Log K, ${\Delta}$H and ${\Delta}$S for the complexation of $La^{3+},\;Ce^{3+}$ and $Eu^{3+}$with various multidentate ligand containing crown ether, diaza crown ether and diamine ether have been determined in methanol and acetonitril solutions at $25^{\circ}C$ by solution calorimetric titration method. The greater stability constant of $La^{3+}$-15C5 than those of 18C6 diaza [2.2] in methanol are discussed in terms of the size of metal ion and the ligand cavity and of metal ion solvation. The stabilities of $Ce^{3+}$ and $La^{3+}$ ion complexes with a various multidentate ligand in acetonitril are in the order of (diamine ether)<18C6<15C5$Ce^{3+}$, $La^{3+}$ and $Eu^{3+}$-diaza [2.2] complexes in acetonitril are increased with the following order: $Eu^{3+}$ < $La^{3+}$ < $Ce^{3+}$, that is increasing order of the optimum size and of the charge density of metal ion.

  • PDF

Studies on the Coordination of Acetamide to Rare Earth Metal Ion (Ln(II) (희토류 금속이온 (Ln(III))과 Acetamide 사이의 상호작용에 대한 연구)

  • Sang-Won Lee;Jeonga Yu;Chang-Ju Yoon;Yoo-Hyek Jun;Young-Sang Choi
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.205-211
    • /
    • 1992
  • The $2{\nu}_{C=0}$ + amide III combination band spectrum of acetamide (AA) was obtained in very dilute solutions of AA+lanthanide shift reagents (LSR) in carbon tetrachloride over the range of $15^{\circ}$ to $45^{\circ}C$. It was found that only 1 : 1 AA-LSR complex is formed by the interaction between carbonyl oxygen of AA and central metal ion(Ln(Ⅲ)) in LSR. The thermodynamic parameters for Ln(III)${\cdot}$O=C bond were determined by computer analysis of concentration and temperature dependent spectra. ${\Delta}H^{\circ}$ for the coordination of AA to Eu$(dpm)_3$, Yb$(dpm)_3$, and Pr$(dpm)_3$ have been found to be -39.1, -28.4, and -25.5 kJ/mol, respectively. It has shown that this type of ion-dipole interaction is more than twice stronger compared to the dipole-dipole interaction in the amide linkage, and largely depending on the steric hindrence effect by the bulky dpm groups around central metal ion (Ln(III)) rather than the ionic potential effect of central metal ion itself.

  • PDF

Prediction of Pathway and Toxicity on Dechlorination of PCDDs by Linear Free Energy Relationship (다이옥신의 환원적 탈염화 분해 경로와 독성 변화예측을 위한 LFER 모델)

  • Kim, Ji-Hun;Chang, Yoon-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.125-131
    • /
    • 2009
  • Reductive dechlorination of polychlorinated dibenzo-p-dioxins (PCDDs) and its toxicity change were predicted by the linear free energy relationship (LFER) model to assess the zero-valent iron (ZVI) and anaerobic dechlorinating bacteria (ADB) as electron donors in PCDDs dechlorination. Reductive dechlorination of PCDDs involves 256 reactions linking 76 congeners with highly variable toxicities, so is challenging to assess the overall effect of this process on the environmental impact of PCDD contamination. The Gibbs free energies of PCDDs in aqueous solution were updated to density functional theory (DFT) calculation level from thermodynamic results of literatures. All of dechlorination kinetics of PCDDs was evaluated from the linear correlation between the experimental dechlorination kinetics of PCDDs and the calculated thermodynamics of PCDDs. As a result, it was predicted that over 100 years would be taken for the complete dechlorination of octachlorinated dibenzo-p-dioxin (OCDD) to non-chlorinated compound (dibenzo-p-dioxin, DD), and the toxic equivalent quantity (TEQ) of PCDDs could increase to 10 times larger from initial TEQ with the dechlorination process. The results imply that the single reductive dechlorination using ZVI or ADB is not suitable for the treatment strategy of PCDDs contaminated soil, sediment and fly ash. This LFER approach is applicable for the prediction of dechlorination process for organohalogen compounds and for the assessment of electron donating system for treatment strategies.

Theoretical Investigation for the Adsorption of Various Gases (COx, NOx, SOx) on the BN and AlN Sheets (N과 AlN 시트에 다양한 기체(COx, NOx, SOx)의 흡착에 관한 이론 연구)

  • Kim, Sung-Hyun;Kim, Baek-Jin;Shin, Chang-Ho;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.1
    • /
    • pp.16-24
    • /
    • 2017
  • The adsorption of various atmospheric harmful gases ($CO_x$, $NO_x$, $SO_x$) on graphene-like boron nitride(BN) and aluminum nitride(AlN) sheets was theoretically investigated using density functional theory (DFT) and MP2 methods. The structures were fully optimized at the $B3LYP/6-31G^{**}$ and $CAM-B3LYP/6-31G^{**}$ levels of theory and confirmed to be a local minimum by the calculation of the harmonic vibrational frequencies. The MP2 single-point binding energies were computed at the $CAM-B3LYP/6-31G^{**}$ optimized geometries. Also the zero-point vibrational energy (ZPVE) and 50%-basis set superposition error (BSSE) corrections were included. The adsorptions of gases on the BN sheet were predicted to be a physisorption process and the adsorptions of gases on the AlN sheet were predicted to be a physisorption process for $CO_x$ and $NO_x$ but to be a chemisorption process for $SO_x$.