The Daehyun gold-silver deposit consists of two hydrothermal quartz veins that fill NE-trending fractures in the Cambro-Ordovician calcitic marble. I have sampled wallrock, hydrothermaly-altered rock and gold-silver ore vein to study the element dispersion and element gain/loss during wallrock alteration. The hydrothermal alteration doesn't remarkably recognized at this deposit and consists of mainly calcite, dolomite, quartz and minor epidote. The ore minerals composed of arsenopyrite, pyrrhotite, pyrite, sphalerite, stannite, chalcopyrite, galena, electrum, native bismuth and silver-bearing mineral. Based on analyzed data, the chemical composition of wallrock consists of mainly $SiO_2$, CaO, $CO_2$ with amounts of $Al_2O_3$, $Fe_2O_3(T)$ and MgO. The contents of $SiO_2$, $Fe_2O_3(T)$, MgO, CaO and $CO_2$ vary significantly with distance from ore vein. The element dispersion doesn't remarkably recognized during wallrock alteration and only occurs near the ore vein margin because of physical and chemical properties of wallrock. Remarkable gain elements during wallrock alteration are $Fe_2O_3(T)$, total S, Ag, As, Bi, Cd, Cu, Ni, Pb, Sb, Sn, W and Zn. Remarkable loss elements are $SiO_2$, MnO, MgO, CaO. $CO_2$ and Sr. Therefore, Our result may be used when geochemical exploration carry out at deposits hosted calcitic marble in the Hwanggangri metallogenic district.