• Title/Summary/Keyword: 열손상 콘크리트

Search Result 48, Processing Time 0.021 seconds

Properties of High-heated Concrete (화재와 콘크리트의 재료성능)

  • 강병희
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.17-23
    • /
    • 2002
  • 화재로 인한 건물의 화해 정도는 건축구조불의 안전성에 크게 영향을 미치게 된다. 특히, 철근 콘크리트 구조물이 화재로 인하여 고열을 받게되면, 그 구조적인 내력이 저하되므로, 이에 대한 안전성 검토는 매우 중요하다. 콘크리트의 고온성상은 시멘트의 종류, 골재의 석질. 배합, 함수율, 재령에 따라 달라진다. 또한, 화해를 입은 콘크리트조 건물은 수열조건에 따라 매우 복잡한 양상을 띄게된다. 일반적으로 화재 건물의 콘크리트 부재에서 나타나는 화해는 각 부재의 폭열 또는 콘크리트의 박리에 의한 주근의 노출 등 직접적인 손상과 보의 변형 기둥의 좌굴, 열팽창에 의한 전단균열 등의 2차 적인 피해가 있다. 그 화해 정도는 지진피해의 파괴현상과 유사한 경우도 있다. 이와 같이 콘크리트 부재의 화재 정도를 검토하기 위해서는 콘크리트의 고온성상 파악이 중요하다.(중략)

A Study on the Damage to a Concrete Bridge Pier due to Fire (화재를 입은 콘크리트 교각의 손상에 관한 연구)

  • 윤우현
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.2
    • /
    • pp.117-125
    • /
    • 1995
  • In this study, the damage to a concrete br~dge pier due to flre caused by the fall of an oil truck were investigated by the use of FEM and by tensile tests for reinfortements. And thtse results were analyzed and compared with the measured values. In the FEM calculations, the selected variable was the fire temperature $T_a=500-800^{\circ}C$. The fixed values were the heat transition coefficient ${\alpha}=2000W/m^2{\cdot}K$. the initial temperature of concrete $T_0=5{\circ}C$ and the fire duration t=30 minutes. As the results obtained from numerical calculations, the property darrlage zone ap,)eared to be 1.5-4.1cm and the structure damage zone appeared to be 8.7- 10.1cm from the concrete surface. And this results give values very similar to those measured, nanlelv 2-4cm and 8~10cm respectively. The results frorn tensile tests give no serious loss of the tensile strength.

Evaluation of Impact Damage Behavior of a Reinforced Concrete Wall Strengthened with Advanced Composite Materials (복합신소재로 보강된 철근 콘크리트 구조물의 충돌손상거동 평가)

  • Noh, Myung-Hyun;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.41-48
    • /
    • 2010
  • In this paper, the analysis of impact damage behavior of a reinforced concrete structure that undergoes both a shock impulsive loading and an impact loading due to the air blast induced from an explosion is performed. Firstly, a pair of multiple loadings are selected from the scenario that an imaginary explosion accident is assumed. The RC structures strengthened with advanced composite materials (ACM) are considered as a scheme for retrofitting RC wall structures subjected to multiple explosive loadings and then the evaluation of the resistant performance against them is presented in comparison with the result of the evaluation of a RC structure without a retrofit. Also, in order to derive the result of the analysis similar to that of real explosion experiments, which require the vast investment and expense for facilities, the constitutive equation and the equation of state (EOS) which can describe the real impact and shock phenomena accurately are included with them. In addition, the numerical simulations of two concrete structures are achieved using AUTODYN-3D, an explicit analysis program, in order to prove the retrofit performance of a ACM-strengthened RC wall structure.

  • PDF

Thermal-Structure Interaction Parallel Fire Analysis for Steel-Concrete Composite Structures under Bridge Exposed to Fire Loading (화재에 노출된 교량하부 강합성 구조물에 대한 열-구조 연성 병렬화재해석)

  • Yun, Sung-Hwan;Gil, Heungbae;Lee, Ilkeun;Kim, Wooseok;Park, Taehyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.283-292
    • /
    • 2013
  • The objective of this research is to evaluate of global and local damage for steel-concrete composite structures under highway bridge exposed to fire loading. To enhance the accuracy and efficiency of the numerical analysis, the proposed transient nonlinear thermal structure interaction(TSI) parallel fire analysis method is implemented in ANSYS. To validate the TSI parallel fire analysis method, a comparison is made with the standard fire test results. The proposed TSI parallel fire analysis method is applied to fire damage analysis and performance evaluation for Buchen highway bridge. The result of analysis, temperature of low flange and web are exceed the critical temperature. The deflection and deformation state show good agreement with the fire accident of buchen highway bridge.

A Study on the Thermal Conduction Ratio of Concrete according to Compressive Strength (콘크리트의 고강도화에 따른 열전도율에 관한 연구)

  • Lee, Dong-Jin;Kim, Dong-Joon;Kwon, Young-Jin;Lee, Jae-Young;Kazunori, Harada
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.21-24
    • /
    • 2010
  • 화재시 고온에 고강도콘크리트가 노출되었을 경우에는 심각한 성능저하 및 손상이 발생할 가능성이 매우 높다. 화재시 고강도 콘크리트는 수밀성으로 인해 폭렬 현상이 더욱 심하게 발생할 것으로 판단된다. 열전도율은 전반적으로 물질과 열의 이동에 의존하며, 콘크리트 내부에서 물리 화학적 반응이 중요한 역할을 한다. 본 연구에서는 콘크리트의 공기량을 비교하면 실험값과 일치하는 해석 결과를 얻을 수 있었고 공극 중에서 함수와 온도를 고려해 해석하면 실험값과 일치하는 결과를 얻었다. 또한, 콘크리트의 열전도율의 해석 결과 $200^{\circ}C$이상의 고온에서 실험값과 일치하는 결과가 도출 되었다.

  • PDF

A Study on the Highest Exposure Temperatures of Exposed Reinforced Concrete Structures at Fire (화재에 노출된 철근콘크리트 구조물의 최고노출온도 추정을 위한 연구)

  • Kim, Seong Soo;Lee, Jeong Bae;Kim, Il Kon;Song, Jong Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.94-100
    • /
    • 2013
  • In this paper, Machinery analysis was conducted, in order to predict highest exposure temperatures and the analyze fire damage in the case of fire on reinforced concrete structure. After analyzing differential thermal of reference materials in accordance with temperature of concrete reference core specimen, it turned out that powerful endothermic peak came resulting from evaporation of capillary water and get water untill $200^{\circ}C$, another endothermic peak came resulting from decomposition of calcium hydroxide at $520^{\circ}C$, and then mass of reference materials remarkably decreased due to endothermic reaction. Another powerful endothermic reaction came after decomposition of calcite at $720^{\circ}C$. After analyzing X-ray diffraction of reference materials in accordance with temperature of concrete reference core specimen, it turned out that calcium hydroxide existed until the temperature of $400^{\circ}C$, but CH almost disappeared and CaO appeared from $600^{\circ}C$. The production increased in proportion to the temperature. This is because that calcium hydroxide and calcite are decomposed and CaO is produced when the temperature of concrete increases with fire. It is estimated that calcium hydroxide and calcite are utterly decomposed and peak disappears, and peak of CaO is remarkably formed instead, at the temperature of $700-800^{\circ}C$.

Development of Nanomodified Snow-Melting Concrete Using Low-Temperature Phase-Change Material Impregnated Lightweight Aggregate (저온 상변화 물질 함침 경량골재를 이용한 나노 개질 융설 콘크리트 개발)

  • Kyoung, Joo-Hyun;Kim, Sean-Mi;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.787-792
    • /
    • 2022
  • In winter, the excessive use of deicing salt deteriorates concrete pavement durability. To reduce the amount of deicing salt used, phase-change materials (PCMs) potentially offer an alternative way to melt snow through their latent heat storage characteristics. In this research, thermal energy storage concrete was developed by using PCM-impregnated expanded clay as 50 % replacement to normal aggregate by volume. In addition, to improve the thermal efficiency of PCM lightweight aggregate (PCM-LWA)-incorporated concrete, multi-walled carbon nanotubes (MWCNTs) were incorporated in proportions of 0.10 %, 0.15 %, and 0.20 % by binder weight. Compressive strength testing and programmed thermal cycling were performed to evaluate the mechanical and thermal responses of the PCM-LWA concrete. Results showed a significant strength reduction of 54 % due to the PCM-LWA; however, the thermal performance of the PCM-LWA concrete was greatly improved with the addition of MWCNTs. Thermal test results showed that 0.10 % MWCNT-incorporated concrete had high thermal fatigue resistance as well as uniform heat flow, whereas specimens with 0.15 % and 0.20 % MWCNT content had a reduced thermal response due to supercooling when the ambient temperature was varied between -5℃ and 10℃.

Numerical Modeling of Residual Behavior of Fire-Damaged Reinforced Concrete Interior Columns (화해를 입은 철근콘크리트 내부기둥의 잔존거동 수치해석 모델)

  • Lee Chadon;Shin Yeong-Soo;Lee Seung-Whan;Lee Chang-Eun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.893-902
    • /
    • 2005
  • Reasonable prediction of residual capacity of fire-damaged reinforced columns is important for both the safety measurement and the rehabilitation of the reinforced concrete structures suffered from exposure to extensive fire. In order to predict the residual behavior of fire-damaged reinforced concrete columns, its predictive model must be able to take into account the amount of heat transferred into the column, the level of deterioration of constituent materials and various column geometries. The numerical model presented in this research includes all these factors. The model has been shown to reasonably predict the residual behavior of fire-damaged columns. Parametric studies were performed using this model for the effects of cover thickness, exposure time to fire and column geometries on the residual behavior of reinforced concrete columns. It was found that serious damage on the residual capacity of column resulted from a longer exposure time to fire but only marginal differences from other factors.

A Study on Generation Quality Comparison of Concrete Damage Image Using Stable Diffusion Base Models (Stable diffusion의 기저 모델에 따른 콘크리트 손상 영상의 생성 품질 비교 연구)

  • Seung-Bo Shim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.4
    • /
    • pp.55-61
    • /
    • 2024
  • Recently, the number of aging concrete structures is steadily increasing. This is because many of these structures are reaching their expected lifespan. Such structures require accurate inspections and persistent maintenance. Otherwise, their original functions and performance may degrade, potentially leading to safety accidents. Therefore, research on objective inspection technologies using deep learning and computer vision is actively being conducted. High-resolution images can accurately observe not only micro cracks but also spalling and exposed rebar, and deep learning enables automated detection. High detection performance in deep learning is only guaranteed with diverse and numerous training datasets. However, surface damage to concrete is not commonly captured in images, resulting in a lack of training data. To overcome this limitation, this study proposed a method for generating concrete surface damage images, including cracks, spalling, and exposed rebar, using stable diffusion. This method synthesizes new damage images by paired text and image data. For this purpose, a training dataset of 678 images was secured, and fine-tuning was performed through low-rank adaptation. The quality of the generated images was compared according to three base models of stable diffusion. As a result, a method to synthesize the most diverse and high-quality concrete damage images was developed. This research is expected to address the issue of data scarcity and contribute to improving the accuracy of deep learning-based damage detection algorithms in the future.

A Experimental Study on the Two Sides Heating of High Strength Concrete Flexural Member Exposed to High Temperature (고온에 노출된 고강도콘크리트 휨부재의 2면가열에 관한 실험적 연구)

  • Kim, Dong-Jun;Kang, Seung-Goo;Lee, Jae-Young;Harada, Kazunori;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.290-293
    • /
    • 2012
  • 화재는 콘크리트 구조물의 역학적 특성에 치명적 손상을 일으켜 건축물의 안전성을 급격하게 감소시킬 수 있다. 특히 고강도콘크리트는 폭렬이 발생하여 심각한 단면 손실과 노출된 철근으로 인하여 건축물의 안전성에 치명적인 영향을 미친다. 이러한 폭렬에 대하여 다양한 연구가 진행되고 있지만, 폭렬의 발생원인은 명백하게 밝혀지진 않았다. 이에 본 연구는 콘크리트의 함수율과 열응력이 폭렬에 미치는 영향을 분석하여 폭렬로부터 구조물의 안전성을 확보하기 위한 기초 자료를 제시하였다.

  • PDF