• Title/Summary/Keyword: 열성

Search Result 871, Processing Time 0.027 seconds

Status of Thermal Stratification Research on Piping System in Korea Nuclear Power Plant (국내원전 배관계통 열성층 연구개발 현황)

  • Lee, Sun Ki
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.2
    • /
    • pp.25-33
    • /
    • 2016
  • The thermal stratification phenomenon in the nuclear power plant can cause abnormal deformation of the piping, contact with the support, damage to the support system. Repetition of the thermal stratification phenomenon or variation of the thermal boundary layer can cause thermal fatigue. Thermal stratification phenomenon in nuclear power plants is still an ongoing issue and active research has been carried out. In this paper, the current situation in Korean nuclear power plants is described, followed by the status of research and the future problems on the thermal stratification phenomenon in Korea.

Experimental study on the thermal performance of a cooling tower (냉각탑 열성능 특성의 실험적 연구)

  • 이한춘;방광현;김무환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.88-94
    • /
    • 1998
  • The thermal performance of cooling towers is affected mainly by the velocity, temperature and humidity of the entering air, In this paper, the effects of these variables are experimentally investigated for both counter-flow and cross-flow cooling towers. The cooling performance is reduced by up to 50% as the relative humidity of the entering air is increased from 40% to 80%. The higher air velocity and lower coolant flow show better cooling performance. The coolant loss rates in the present experimental conditions are in the range of 0.4 to 1.7%

  • PDF

The Evaluation of Thermal Performance in Insulated Super Window system (단열창호 슈퍼윈도우의 열성능 평가)

  • Jang, Cheol-Yong;Cho, Soo;Park, Sang-Woo
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.286-290
    • /
    • 2009
  • Generally the window of the building is an objective of mining and having a distant view and also for a circulation it will can open and shut because becomes the structure insulation, the meat detailed drawing it does a very difficult portion, it is. To reduce the loss of the energy which leads, to an air conditioning energy and an expense increase problem the color which the interior furniture and the clothing due to the augmentation and the corpse ultraviolet rays of the unpleasant feeling which is caused by with the transient one solar energy influx which leads the window will burn, it joins in the window and it confronts and the novel solution is demanded.

  • PDF

A Study on Thermal Performance of the Super Window system (초단열 슈퍼윈도우의 열성능평가 연구)

  • Jang, Cheol-Yong;Cho, Soo;Sung, Uk-Joo;Lee, Jin-Sung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.123-128
    • /
    • 2008
  • Generally the window of the building is an objective of mining and having a distant view and also for a circulation it will can open and shut because becomes the structure insulation, the meat detailed drawing it does a very difficult portion, it is. To reduce the loss of the energy which leads, to an air conditioning energy and an expense increase problem the color which the interior furniture and the clothing due to the augmentation and the corpse ultraviolet rays of the unpleasant feeling which is caused by with the transient one solar energy influx which leads the window will burn, it joins in the window and it confronts and the novel solution is demanded.

  • PDF

A Study on Thermal Performance of the Heat Recovery Ventilator used Window (창호적용 배열회수 환기유닛의 열성능평가 연구)

  • Jang, Cheol-Yong;Cho, Soo;Sung, Uk-Joo;Lee, Jin-Sung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.129-134
    • /
    • 2008
  • Generally the window of the building is an objective of mining and having a distant view and also for a circulation it will can open and shut because becomes the structure insulation, the meat detailed drawing it does a very difficult portion, it is. And, recently the use of heat recovery ventilator has increased rapidly for improvement of air Quality and energy saving in building. But, the high efficient heat exchange will be more increasable than water vapors which were only occurred residential active. Purpose of this study is measurement of thermal performance about heat-recovery system integrated window. The result of the window thermal resistance is 1.80 $W/m^2K$ by KS F 2278. Air tightness is 5.96 m3/m2h at 4 Pa by KS F 2292.

  • PDF

Thermal Characteristics of Domestic Solar Collector for Low-Temperature Applications (국내 저온용 집열기의 열성능 특성)

  • Kim, Jeong-Bae;Rhie, Soon-Myeong;Yoon, Eung-Sang;Lee, Jin-Kook;Joo, Moon-Chang;Baek, Nam-Choon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.215-220
    • /
    • 2008
  • This study shows the results on thermal performance test with domestic solar collector for low-temperature applications using KS, then reveals the efficiency difference between KS and EN standard. Using the test results, this study presents the status of thermal performance with domestic solar collector including flat-plate, single evacuated, and double evacuated (with mirror or U-tube) solar collector.

  • PDF

The Spatial Factor Analysis of Urban Heat Island Effect (도시열섬효과의 공간 요인 분석)

  • Jeong, Jong-Chul
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.97-99
    • /
    • 2008
  • 지구온난화의 문제가 다양한 분야에서 논의되고 있다. 특히 도시열성효과에 대한 문제는 도시기후변화의 측면에서 공간적인 특성을 반영하여 나타난다. 현장조사 자료와 위성자료에 의한 연구는 도시의 열 환경이 공간적으로 어떤 분포를 나타내는지 분석하고 평가하는데 중요한 요소로 연구가 이루어져왔다. 본 연구에서는 도시열성효과가 도시 내부공간의 열 환경에 대해 공간적으로 나타나는 요인을 평가하고 이의 상관성을 도시 공간분포의 범위에서 평가하였다. 연구지역인 전주시는 지난 20년 동안 도시환경의 공간 구조적 요인 보다는 도시 열 발생원에 의해 30% 이상의 영향을 받는 것으로 평가되었다. 이를 검증하기 위해 고해상도 위성자료를 활용하여 공간 요인 분석을 수행하였다.

  • PDF

SNU WASHINGTON 측광계의 표준화와 WASHINGTON 측광계의 일반적 특성

  • An, Seong-Min;Lee, Si-U
    • Publications of The Korean Astronomical Society
    • /
    • v.7 no.1
    • /
    • pp.167-188
    • /
    • 1992
  • 서울대 천문학과(SNU)의 Washington 측광계를 사용하여 관측한 자료와 ADC (Astronomical Data Center)의 자료를 분석함으로써 SNU Washington 측광계를 표준화 시켰다. SNU Washington 측광계중에서 C필터에 나타나는 적색광 누출은 V필터와의 결합을 통해 보정했으며, 그 최대값은 K0형에서 약 $0^{m}.14$까지 이른다. ADC의 자료분석 결과 G. K형 별들에 대해 중원소 측광지수와 중원소함량과 서로 잘 일치함을 알 수 있었고. 주계열성의 경우 온도 측광지수와 온도와는 좋은 관계를 보임을 알 수 있었다. 또한 ($M-T_2$)과 ($M-T_1$) 평면상에서는 중원소함량과 광도계급에 무관한 좋은 온도관계를 나타냄을 알았다. 그리고 이 측광계의 장점으로 나타난 CN지수와 CN 특이성과는 특별한 관계를 찾기가 어려웠고, 이 측광계만으로는 상도계급의 구분을 다른 측광계 만큼 분명하게 결정짓기가 어려웠다. 그러나 표면중력과이 측광계의 색지수와의 관계를 본 결과 초거성, 거성, 주계열성을 비교적 잘 구분해 낼 수 있었다.

  • PDF

Numerical Analysis of Thermal Stratification and Turbulence Penetration into Leaking Flow in a Circular Branch Piping (원형 T분기배관 내 누설유동의 열성층화와 난류침투에 관한 전산해석적 연구)

  • Han, Seong-Min;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1833-1838
    • /
    • 2003
  • In the nuclear power plant, emergency core coolant system(ECCS) is furnished at reactor coolant system(RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can be occurred due to coolant leaking in the check valve. The thermal stratification produces excessive thermal stresses at the pipe wall so as to yield thermal fatigue crack(TFC) accident. In the present study, when the turbulence penetration occurs in the branch piping, the maximum temperature differences of fluid at the pipe cross-sections of the T-branch with thermal stratification are examine

  • PDF

An Analysis on Thermal Stratification in Residual Heat Removal System Piping of Nuclear Power Plant (가동원전 잔열제거계통 배관에서의 열성층유동 해석)

  • Park, M.H.;Kim, K.C.;Kim, K.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1597-1602
    • /
    • 2003
  • Numerical analysis is carried out to assess the temperature distribution on the mixing tee line of Residual Heat Removal System (RHRS). In RHRS, hot and cold fluids of main and bypass piping are mixed and unmixed by the flow rate or piping layout. Thermal stratification phenomenon is a cause of major degradation on RHRS piping. According to the analysis for each operation modes, maximum temperature difference between top and bottom of piping were evaluated about 60K when the flow rate of main and bypass lines is same. Temperature difference will be decreased at the elbow on RHRS piping if the length of vertical piping is increased.

  • PDF