• Title/Summary/Keyword: 열교환 효율

Search Result 191, Processing Time 0.024 seconds

Design and Performance Evaluation of Dimpled EGR Cooler (딤플형 EGR 냉각기의 설계 및 성능평가)

  • Seo, Young-Ho;Lee, Hyun-Min;Heo, Seong-Chan;Ku, Tae-Wan;Song, Woo-Jin;Kang, Beom-Soo;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.291-298
    • /
    • 2010
  • A conventional EGR cooler, which is used in an EGR system of an automobile diesel engine, has a low heat-exchange efficiency. To maximize the heat transfer between the exhaust gas and coolant, dimples are formed on the surface of heat exchange tubes. When designing the dimpled EGR cooler, the net heat transfer areas in the conventional and dimpled tube-type EGR coolers are compared. Structural integrity evaluations are also performed by combining finite element analysis with a homogenization method. Subsequently, the process of manufacturing the dimpled tube, i.e., the formation of dimples, edge bending, center v-notch bending, compression, and plasma welding, is established and carried out. Thus, the dimpled EGR cooler is developed, and its performance is verified.

Study on Thermal Behavior and Design Method for Coil-type PHC Energy Pile (코일형 PHC 에너지파일의 열적 거동 및 설계법에 관한 연구)

  • Park, Sangwoo;Sohn, Jeong-Rak;Park, Yong-Boo;Ryu, Hyung-Kyou;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.37-51
    • /
    • 2013
  • An energy pile encases heat exchange pipes to exchange thermal energy with the surrounding ground formation by circulating working fluid through the pipes. An energy pile has many advantages in terms of economic feasibility and constructability over conventional Ground Heat Exchangers (GHEXs). In this paper, a coil-type PHC energy pile was constructed in a test bed and its thermal performance was experimentally and numerically evaluated to make a preliminary design. An in-situ thermal response test (TRT) was performed on the coil-type PHC energy pile and its results were compared with the solid cylinder source model presented by Man et al. (2010). In addition, a CFD numerical analysis using FLUNET was carried out to back-analyze the thermal conductivity of the ground formation from the Ttype PHC energy RT result. To study effects of a coil pitch of the coil-type heat exchange pipe, a thermal interference between the heat exchange pipes in PHC energy piles was parametrically studied by performing the CFD numerical analysis, then the effect of the coil pitch on thermal performance and efficiency of heat exchange were evaluated. Finally, an equivalent heat exchange efficiency factor for the coil-type PHC energy pile in comparison with a common multiple U-type PHC energy pile was obtained to facilitate a preliminary design method for the coil-type PHC energy pile by adopting the PILESIM2 program.

Rational Efficiency of Compression Processes by the Second Law of Thermodynamics (열역학 제2법칙에 의한 압축과정의 합리적 효율)

  • 정평석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1200-1210
    • /
    • 1990
  • Conventional efficiencies of the adiabatic compression process such as isentropic efficiency and polytropic efficiency can be explained as exergetic efficiencies replacing the reference atmospheric temperature with the temperature which can be determined in the process itself. So that, other efficies such as maximum isentropic efficiency can be defined by giving proper reference temperatures. By applying the same logical principles, exergetic and other rational efficiencies for the non-adiabatic compression process are also defined and discussed for their physical meanings and reasonable engineering applications.

The Effect of Construction Methods on Geothermal Exchange Rates of Cast-in-place Energy Piles (현장타설말뚝형 에너지 파일의 시공형태별 지중 열교환량에 관한 연구)

  • Park, Yong-Boo;Nam, Yu-Jin;Sim, Young-Jong;Sohn, Jeong-Rak
    • Land and Housing Review
    • /
    • v.3 no.2
    • /
    • pp.169-175
    • /
    • 2012
  • In recent, there are many studies associated with energy piles to save initial construction cost for ground source heat pump system. In this study, to evaluate geothermal exchange rates two types (a connection type and a slinky type) of cast-in-place energy piles (PRD, 4.5m in depth, 1,200 mm in diameter) were constructed for the tests and their efficiencies were compared with numerical analysis results. As a result, starting with operation, geothermal exchange rate gradually decreases due to exchange of lower ground temperature. In the case of connection type, temperature difference is $0.37^{\circ}C$ in heating mode and $0.34^{\circ}C$, in cooling mode, respectively. In addition, in case of a connection type, geothermal exchange rate in heating mode is 2,314W/m and in cooling mode, 252.2W/m whose value is 9% higher than in heating mode. In the case of slinky type, the average geothermal exchange rate in heating mode is 168.0W/m, which is about 27% lower than that of connection type.

Study on the Hydraulic and Thermal Characteristics of Metallic Porous Medium (다공성 금속의 수력 및 열 교환 특성에 관한 연구)

  • Jin, M.H.;Kim, P.H.;Lee, Y.H.;Chung, H.S.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.54-58
    • /
    • 2008
  • 최근 열교환기의 향상을 위해 발포다공성매체의 적용이 증가하고 있다. 열교환기의 적용에 있어서 발포다공성매체의 이점을 살펴보기 위해 본 연구에서는 2가지 실험을 수행하였다. 첫 번째는 수력의 관점에서 투과계수 및 내부계수를 결정하는 것이고, 두 번째는 열교환의 관점에서 다공성매체의 유효전도율을 측정하는 것이다. 본 실험에서는 기공도는 거의 같으나 기공의 크기가 각각 20 ppi와 40 ppi인 구리 다공성매체를 사용하였다. 실험의 결과는 40 ppi 크기의 다공성매체가 수력과 열교환, 두가지 관점 모두에서 보다 높은 저항 효율을 나타낸다는 것을 보여준다.

  • PDF

A study on the heat recovery Characteristics of double tube type heat recovery ventilation system by double pipe material (이중관 재질에 따른 이중관형 열회수 환기장치의 열회수 특성 연구)

  • Kim, Eun-Young;Cho, Jin-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.21-26
    • /
    • 2017
  • In this study, performance tests were conducted to investigate the applicability of a double-tube heat recovery ventilation system. Paper, aluminum, polymer, were investigated as materials for the inner tube using the same exhaust-air volume. In all cases, the temperature exchange efficiency of the aluminum tube was the highest, while the paper tube showed similar results to those of the polymer tube. This probably resulted from the differences in thermal conductivity and thicknesses of the materials. The humidity exchange efficiency was the highest for the paper tubes in all cases, while the aluminum tubes and polymer tubes showed similar results. The total heat exchange efficiency, which includes the values of humidity exchange and temperature exchange, was highest in the case of the paper tube, and the aluminum tube and the polymer tube showed similar results. In the case of the paper tube, sensible heat and latent heat exchange occur at the same time, and the coefficient of energy of the aluminum tube and polymer tube are large values, when to be compared with only applicably sensible heat exchange coefficient of the aluminum tube and the polymer tube of total heat exchange efficiency value. The results of this study could be applied to the design of a ventilation system.

Heat Integration and Economic Analysis of Dry Flue Gas Recirculation in a 500 MWe Oxy-coal Circulating Fluidized-bed (CFB) Power Plant with Ultra-supercritical Steam Cycle (순환 유동층 보일러와 초초임계 증기 사이클을 이용한 500 MWe급 순산소 화력발전소의 건식 재순환 흐름의 열 교환 및 경제성 분석)

  • Kim, Semie;Lim, Young-Il
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.60-67
    • /
    • 2021
  • This study presented techno-economic analysis of a 500 MWe oxy-coal power plant with CO2 capture. The power plant included a circulating fluidized-bed (CFB), ultra-supercritical steam turbine, flue gas conditioning (FGC), air separation unit (ASU), and CO2 processing unit (CPU). The dry flue gas recirculation (FGR) was used to control the combustion temperature of CFB. One FGR heat exchanger, one heat exchanger for N2 stream exiting ASU, and a heat recovery from CPU compressor were considered to enhance heat efficiency. The decrease in the temperature difference (ΔT) of the FGR heat exchanger that means the increase in heat recovery from flue gas enhanced the electricity and exergy efficiencies. The annual cost including the FGR heat exchanger and FGC cooling water was minimized at ΔT = 10 ℃, where the electricity efficiency, total capital cost, total production cost, and return on investment were 39%, 1371 M$, 90 M$, and 7%/y, respectively.

A study on operation-characteristics of internal reforming molten carbonate fuel cell (내부개질형 용융탄산염형 연료전지의 운전특성 연구)

  • 하흥용;임태훈;홍성안;문형대;이호인
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.05a
    • /
    • pp.243-251
    • /
    • 1998
  • 내부개질형 용융탄산염 연료전지는 일반적인 연료전지가 갖는 고효율, 저공해, 모듈화 가능성 등의 장점 이외에도, 스택의 반응열을 열교환 없이 직접 개질반응에 이용하는 내부개질 특성 때문에 발전 설비의 단순화에 따른 추가 열효율의 상승이라는 장점을 갖는다. 또한 외부개질 용융탄산염 연료전지가 중앙집중식 대형 발전에 적합한 것과는 달리 내부개질형은 수십 MW 이하의 분산배치형 혹은 현장설치형에 더욱 적합하다는 특징이 있다. (중략)

  • PDF

Evaluation on Thermal Performance Along with Constructability and Economic Feasibility of Large-diameter Cast-in-place Energy Pile (대구경 현장타설 에너지파일의 열교환 성능과 시공성 및 경제성 분석)

  • Park, Sangwoo;Sung, Chihun;Lee, Dongseop;Jung, Kyoungsik;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.5
    • /
    • pp.5-21
    • /
    • 2015
  • An energy pile is a novel type of ground heat exchangers (GHEX's) which sets up heat exchange pipes inside a pile foundation, and allows to circulate a working fluid through the pipe for exchanging thermal energy with the surrounding ground stratum. Using existing foundation structure, the energy pile can function not only as a structural foundation but also as a GHEX. In this paper, six full-scale energy piles were constructed in a test bed with various configurations of the heat exchange pipe inside large-diameter cast-in-place piles, that is, three parallel U-type heat exchangers (5, 8 and 10 pairs), two coil type heat exchangers (with a 500 mm and 200 mm pitch), and one S-type heat exchanger. During constructing the energy piles, the constructability of each energy pile was evaluated with consideration of the installation time, the number of workers and any difficulty for installing. In order to evaluate the thermal performance of energy piles, the thermal performance tests were carried out by applying intermittent (8 hours operating-16 hours pause) artificial cooling operation to simulate a cooling load for commercial buildings. Through the thermal performance tests, the heat exchange rates of the six energy piles were evaluated in terms of the heat exchange amount normalized with the length of energy pile and/or the length of heat exchange pipe. Finally, the economic feasibility of energy pile was evaluated according to the various types of heat exchange pipe by calculating demanded expenses per 1 W/m based on the thermal performance test results along with the market value of heat exchange pipes and labor cost.