• Title/Summary/Keyword: 열가소성 복합소재

Search Result 40, Processing Time 0.025 seconds

Investigation of Properties of Structural Foam with Different Conformation and via Thermal Aging Condition (구조용 폼의 조성 및 열 노화에 따른 변형특성 관찰)

  • Choe, Jin-Yeong;Kwon, Il-Jun;Park, Sung-Min;Kwon, Dong-Jun
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.122-127
    • /
    • 2018
  • Sandwich composites of carbon fiber reinforced plastic(CFRP) and polymer foam will be used to automobile and aerospace industry according to increasing importance of light weight. In this study, mechanical and heat resistance properties of sandwich composites were compared with type of polymer foam (polyethylene terephthalate(PET), polyvinylchloride(PVC), epoxy and polyurethane). All types of polymer foams were degraded to 30, 60, 120, 180 minutes in $180^{\circ}C$. After heat degradation, the polymer foams were observed using optical microscope and compressive test was performed using universal testing machine(UTM). Epoxy foam had the highest compressive property to 2.6 MPa and after thermal degradation, the mechanical property and structure of foam were less changed than others. Epoxy foam had better mechanical properties than other polymer foams under high temperature. Because the epoxy foam was post cured under high temperature. As the results, Epoxy foam was optimal materials to apply to structures that thermal energy was loaded constantly.

Thermally Conductive Polymer Composites for Electric Vehicle Battery Housing (전기자동차 배터리 하우징용 열전도성 고분자 복합재료)

  • Yoon, Yeo-Seong;Jang, Min-Hyeok;Moon, Dong-Joon;Jang, Eun-jin;Oh, Mee-Hye;Park, Joo-Il
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.331-337
    • /
    • 2022
  • Manufactured thermoplastic composite materials to replace the metal materials used as battery housing materials for electric vehicles with lightweight materials. As the matrix material, nylon 6 which is a polymer material was used. Boron Nitrate(BN), which has high thermal conductivity, was used to provide heat dissipation performance. The heat dissipation characteristics of the thermally conductive polymer composite material according to the BN content and particle size were analyzed. The thermal conductivity value increased as the filler content increased, and composite materials particle size of 60 to 70㎛ and BN content of 50%, the thermal conductivity was 1.4 W/mK. The larger the particle size, the wider the inter-particle interface contact surface, which means that a thermal path was formed. wider the interfacial contact surface between the particles, and the thermal path was formed. A battery housing was manufactured using the manufactured thermally conductive polymer composite material, and the temperature change during charging and discharging of the cell was observed, and the possibility as a substitute material for the battery housing was confirmed.

The Development of Eco-friendly Fiber Materials for Transport (수송용 친환경 섬유소재 개발)

  • Bok, Jin-Seon;Lee, Hyun-Seok;Jeong, Geung-Sik;Lee, Ki-Young;Park, Chang-Seok
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.18-18
    • /
    • 2012
  • 전 세계적으로 이산화탄소 배출량 저잠을 위해 모든 산업분야에서 연구개발의 중점을 두고 있다. 그의 일환으로 자동차 산업에서는 EU규제에 따라 리사이클이 가능한 소재 개발이 요구되고 있으며, 그중 많은 양이 사용되고 있는 PU Foam의 대체 재료 개발이 시급한 실정이다. 기존 자동차의 흡음재로 주로 사용되고 있는 PU Foam 소재는 통기성이 부족할 뿐만 아니라 연소 시 인체에 유해한 HCN Gas를 발생시키고, 한번 성형된 부품은 Recycle 및 Re-Use가 불가능하다는 단점이 있다. 또한 장시간 사용시 황변 발생과 악취가 발생하는 등으로 최근 대두되고 있는 자동차 내장재 감성품질 향상 측면에 한계를 나타내고 있다. 이러한 Low Melting 성능을 가지는 PET 부직포 소재의 한계를 극복하기 위하여 저융점 성능의 Elastic Fiber의 개발과 함께 고탄성 복합부직포 소재의 개발을 통해 높은 변형률과 우수한 복원력을 나타내는 환경친화형 열가소성 탄성체(Thermoplastic Elastomer) 개발을 추진하고 있다. 고탄성 복합부직포는 자동차 내장재 성형 시 열을 가하더라도 Elastomer 자체의 탄성 발현을 통해 초기의 Bulky성을 유지할 수 있으며, Recycle 및 Re-use가 가능하여 환경 친화적인 측면에서도 큰 장점을 갖고 있다. 자동차용 흡음 내장재뿐만 아니라 각종 수송용 차량의 경량화 및 쾌적성 향상을 위한 용도로써 자동차 내장용 PU Foam의 57% 이상을 차지하고 있는 Seat Cushion재 등의 대체가 가능하며, 다양한 산업분야에서 사용되고 있는 PU Foam의 대체로 다양한 용도 전개가 가능할 것으로 예상된다. 본 연구에서는 PU Foam의 대체 재료로 각광받고 있는 Elastic PET를 개발하여 자동차 내장재로의 적용 가능성을 검토하였다.

  • PDF

Next Generation Lightweight Structural Composite Materials for Future Mobility Review: Applicability of Self-Reinforced Composites (미래모빌리티를 위한 차세대 경량구조복합재료 검토: 자기강화복합재료의 적용 가능성)

  • Mi Na Kim;Ji-un Jang;Hyeseong Lee;Myung Jun Oh;Seong Yun Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.1-15
    • /
    • 2023
  • Demand for energy consumption reduction is increasing according to the development expectations of future mobility. Lightweight structural materials are known as a method to reduce greenhouse gas emissions and improve energy efficiency. In particular, fiber reinforced polymer composite (FRP) is attracting attention as a material that can replace existing metal alloys due to its excellent mechanical properties and light weight. In this paper, industrial applications and research trends of carbon fiber reinforced composites (CFRP, carbon FRP) and self-reinforced composites (SRC) were reviewed based on the reinforcement, polymer matrix, and manufacturing process. In order to overcome the expensive process cost and long manufacturing time of the epoxy resin-based autoclave method, which is mainly used in the aircraft field, mass production of CFRP-applied electric vehicles has been reported using a high-pressure resin transfer molding process including fast-curing epoxy. In addition, thermoplastic resin-based CFRP and interface enhancement methods to solve the recycling issue of carbon fiber composites were reviewed in terms of materials and processes. To form a perfect matrix-reinforcement interface, which is known as the major factor inducing the excellent mechanical properties of FRP, studies on SRC impregnated with the same matrix in polymer fibers have been reported. The physical and mechanical properties of SRC based on various thermoplastic polymers were reviewed in terms of polymer orientation and composite structure. In addition, a copolymer matrix strategy for extending the processing window of highly drawn polypropylene fiber-based SRC was discussed. The application of CFRP and SRC as lightweight structural materials can provide potential options for improving the energy efficiency of future mobility.

Fabrication and Properties of Natural Fiber-Reinforced Waste Wool/Polypropylene Composites (NFRP) (천연섬유강화 폐양모/폴리프로필렌 복합재료(NFRP)의 제조 및 특성)

  • Kim, Ki Hyun;Cho, Donghwan;Kim, Jong Hyun
    • Journal of Adhesion and Interface
    • /
    • v.9 no.2
    • /
    • pp.16-23
    • /
    • 2008
  • In this study, novel waste wool/polypropylene NFRPs (natural fiber reinforced polymer composites), which are constituted with waste wool discarded as industrial scrap during manufacturing processes of woven fabrics and general purpose thermoplastic polypropylene (PP), were fabricated by means of compressionmolding and their mechanical and thermal properties were characterized. The mechanical properties of PP resin were significantly improved by an introduction of waste wool to PP. In particular, as the loading of waste wool was 50 vol% in the NFRP, the flexural strength of the NFRP was increased about 20%, the flexural modulus about 143%, the tensile strength about 76%, and the tensile modulus about 90% in comparison with each of PP control. In addition, the maximum value of the heat deflection temperature (HDT) obtained with the NFRP was $138^{\circ}C$ at a 50 vol% loading of waste wool. This is $21^{\circ}C$ higher than the HDT of PP control. The result here suggests that waste wool be a potential candidate for a reinforcing material of thermoplastic matrix resins.

  • PDF

Electrical Resistance Measurement in Characterizing the Internal Damage of Carbon Nanotube/Polypropylene Nanocomposites (전기저항 측정법을 이용한 탄소나노튜브/폴리프로필렌 나노복합재료의 내부 손상 예측)

  • Kim, Hak-Soo;Kwon, Dong-Jun;Wang, Zuo-Jia;Gu, Ga-Young;Kim, Dae-Sik;Lee, Chun-Soo;Park, Joung-Man
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.201-206
    • /
    • 2013
  • The electrical resistance measurement was investigated as a damage monitoring method. In this study, 0.5 wt% Carbon nanotube reinforced polypropylene (CNT/PP) composites were evaluated under compressive fatigue loading. The shape of specimens was $20^{\circ}$ curved round type. Compression strength and electrical resistance were measured at different sections of specimen during compression. The microcracks of CNT/PP composites were detected based on the changing ratio of electrical resistance. Micro-damage during compressive fatigue test could be detected by electrical resistance measurements. The reason is that the contact points of CNTs in composites decreased under fatigue loading. During compressive fatigue test, larger change of electrical resistance was detected at the microcrack sections. It was proved that microcracks could be detected by electrical resistance measurement under compression test, whereas the real delamination parts were consistent with the predicted results by electrical resistance measurement.

Elastomeric High Barrier Materials for Vehicle (고차단성 자동차 부품용 고무소재)

  • Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.46 no.1
    • /
    • pp.2-9
    • /
    • 2011
  • Permeability to gases and vapors is an important function in tires, rubber tubes and diaphragms. It mainly depends on the rubber material. Generally, permeability increases in the following order: silicone rubber > NR > EPDM > SBR > NBR > FPM > ECO > IIR. And, for an elastomer permeability is also very much dependent on compounding. Many research works are reported in the area of gas permeability for formed rubber,$^{1-7}$ however, few studies are found for unformed elastomer products. Incorporation of nano-particles, use of thermoplastic elastomers and applying high barrier multilayer coatings are the main approaches to obtain a high barrier elastomeric product. In this paper, barrier article for vehicle is introduced.

Study on Graphite/Polypropylene/Liquid Crystalline Polymer Composite for a Bipolar Plate of Polymer Electrolyte Membrane Fuel Cell (고분자 전해질막 수소 연료 전지 분리판 용 흑연/폴리프로필렌/액정고분자 복합 재료의 특성에 관한 연구)

  • Dhungana, Biraj;Son, Younggon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3627-3632
    • /
    • 2015
  • We investigated mechanical, rheological and electrical properties of graphite/PP/LCP composites for a bipolar plate of the polymer electrolyte membrane fuel cell. The composites containing very low molecular weighted PP showed much higher electrical conductivity compared with other thermoplastics. This was attributed to the enhanced dispersion of graphite particles due to the low viscosity of the PP. The conductivity of the composites was increased in a great extent by incorporation of small amount of carbon nano tube (CNT). However, the acid treated CNT which contains oxygen atoms did not increase the conductivity of the composite. From this result, it is concluded that the CNT has higher affinity with non polar polymer. The composite with low molecular weighted PP provided good processability so that the composites can be processed by an injection molding while the mechanical strength is deficient compared to other polymers. In order to reinforce the low mechanical property, LCP/PP was used as a binder and the graphite/PP/LCP composite showed the higher conductivity and moderate mechanical strength maintaining suitable processability.

Organically Modified Vermiculite-Poly(Ethylene Terephthalate) Nanocomposites (유기물로 개질한 나노점토-폴리(에틸렌 테레프탈레이트) 복합재료의 기계적 특성)

  • Hai Anh Thi Le;Yong Tae Park
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.275-280
    • /
    • 2023
  • Because polymer-based composites are lightweight and have excellent properties, their demand is growing rapidly as a way to fulfill properties that are difficult to achieve with a single material. As a result, there has been a lot of research on polymer nanocomposites, which are made by dispersing particles with a size of 1-100 nm in a polymer matrix. In addition, many nanocomposites using thermoplastic resins as matrix materials are being studied. In this study, poly(ethylene terephthalate) (PET)-based nanocomposites containing organic nanoclays modified with cetyltrimethylammonium bromide (CTAB) as interlayer materials were prepared. Among various nanoclays, vermiculite (VMT) has been studied to increase the mechanical and thermal properties of polymeric materials due to its low cost, abundant reserves and unique properties. However, the strong interlayer bonding of VMT has limited its utilization due to its poor exfoliation and dispersion performance within polymer matrices. In this study, the mechanical properties of the VMT content were confirmed by tensile tests, the dispersion of VMT particles in the PET matrix was evaluated by TEM cross-sectional images, and the nitrogen gas barrier properties were evaluated.

A Study on the Production of Carbon Fiber Composites using Injection-molding Grade Thermoplastic Pellets (사출성형용 열가소성 펠렛을 이용한 탄소섬유 복합소재 제작에 관한 연구)

  • Jeong, E.C.;Yoon, K.H.;Kim, J.S.;Lee, S.H.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.402-408
    • /
    • 2016
  • A manufacturing technology of carbon fiber composites with thermoplastic polymer pellets and continuous woven fiber was investigated using a compression molding process. To secure the impregnation of resin into the porosity of fabric the composite specimens were prepared with general injection-molding grade polypropylene pellets and low viscosity polycarbonate pellets. Tensile tests of polypropylene and polycarbonate composites were performed. Polycarbonate composites showed higher fracture strength than that of polypropylene composites because of the difference of matrix properties. However, the increase rate of strength was lower than that of polypropylene composites due to the difference of coherence between matrix and reinforcement. To investigate the effect of carbon fiber volume fraction on the fracture strength variation polypropylene composites with different volume fraction were compression molded and tensile tests were performed together. It was shown that the fracture strength of the polypropylene composites increased by 3.2, 5.4 and 6.9 times with the increase of carbon fabric volume fraction of 0.256, 0.367, and 0.480, respectively.