• 제목/요약/키워드: 연환도

검색결과 2건 처리시간 0.014초

양휘산법 (楊輝算法) 에 제시된 연환도 (連環圖) 의 일반화 (A generalization of Yeonhwando in Yang Hui Suanfa)

  • 박교식
    • 한국수학사학회지
    • /
    • 제29권4호
    • /
    • pp.219-232
    • /
    • 2016
  • In this paper, the problem posed in Yeonhwando is presumed like the following: "Make the sum of eight numbers in each 13 octagons to be 292, and the sum of four numbers in each 12 squares to be 146 using every numbers once from 1 to 72." Regarding this problem, in this paper, firstly, it is commented that there can be a lot of derived solutions from the Yang Hui's solution. Secondly, the Yang Hui's solution is generalized by using sequence 1 in which the sum of neighbouring two numbers are 73, 73-x by turns, and sequence 2 in which the sum of neighbouring two numbers are 73, 73+x by turns. Thirdly, the Yang Hui's solution is generalized by using the alternating method.

정사각형 형태가 아닌 마방진에 대한 고찰 (A study on various non-regular magic squares)

  • 이경언
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제24권1호
    • /
    • pp.195-220
    • /
    • 2010
  • 방진 또는 마방진(magic square, 魔方陣)은 정사각형 모양으로 수를 배열하여 가로, 세로, 대각선의 합이 같아지도록 만든 수배열을 말한다. 마방진의 '방'에는 정사각형이라는 의미가 포함되어 있다. 만약 '방' 즉 정사각형이라는 조건을 제거한다면 어떤 수배열이 가능할 것인가? 중국의 "양휘산법"과 "산법통종"에는 취오도(聚五圖)와 취육도(聚六圖), 취팔도(聚八圖), 찬구도(攢九圖), 팔진도(八陣圈), 연환도(連環圖)와 같은 다양한 수배열이 제시되어 있다. 또한 조선 시대 수학자 최석정의 "구수략"에는 지수귀문도(地數龜文圖)라는 독창적이고 아름다운 수배열이 제시되어 있다. 이밖에도 원 모양의 마방진, 별 모양의 마방진 등 다양한 마방진이 존재한다. 본고에서는 이러한 정사각형 형태가 아닌 마방진을 소개하고 이들이 갖는 몇 가지 성질과 이에 대한 활용 방법을 제시하였다.