• Title/Summary/Keyword: 연직하중

Search Result 259, Processing Time 0.029 seconds

Analytical Study of Delamination Buckling in Laminated Beams (적층보의 박리좌굴에 관한 해석적 연구)

  • Kim, Young Chan
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.51-58
    • /
    • 1996
  • 연직하중을 받는 적층보에서 박리좌굴하중을 산정하는 방법을 제시하였다. 재료역학적 방법에 근거하여 박리된 보의 변위함수를 설정하였으며 힘과 변위의 적합조건을 이용하여 연직하중과 박리좌굴하중과의 관계식을 유도하였다. 또한 박리의 진전을 판단하기 위한 변형도에너지 방출율(release rate)을 산정하였다. FRP로 보강된 GLULAM보에 대한 실험과 비교한 이론해는 정확한 결과를 보여 주었으며 연직하중을 받는 적층보의 박리 진전현상은 축하중을 받는 보와는 다른 거동을 보였다.

  • PDF

Fundamental Study on Analysis of the Bonding Effect on Asphalt Pavement (아스팔트포장의 경계층 영향에 대한 해석적 기초연구)

  • Choi, Jun-Seong
    • International Journal of Highway Engineering
    • /
    • v.7 no.3 s.25
    • /
    • pp.11-21
    • /
    • 2005
  • To examine adequacy of existing multi-layer elastic analysis of layer interface conditions, this study compared outputs of finite element analysis and multi-layer elastic analysis as vertical load was applied to the surface of asphalt pavements. Structural pavement analysis considering influence of a horizontal load was also carried out in order to simulate passing vehicle loads under various interface conditions using ABAQUS, a three dimensional finite element program. Pavement performance depending on interface conditions was quantitatively evaluated and fundamental study of layer interface effect was performed in this study. As results of the study, if only vertical load is applied, subdivision of either fully bonded or fully unbonded is enough to indicate interface condition. On the other hand, when horizontal load is applied with vertical load, pavement behavior and performance are greatly changed with respect to layer interface condition.

  • PDF

Estimation of Tensile Strain Effect Factor of Layer Interface Considering Lateral Loads of Moving Vehicle (주행차량의 수평하중을 고려한 층 경계면의 인장변형률 영향계수 개발)

  • Seo, Joo Won;Choi, Jun Seong;Kim, Soo Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6D
    • /
    • pp.951-960
    • /
    • 2006
  • Structural pavement analysis considering lateral loads of moving vehicle was carried out in order to simulate passing vehicle loads under various interface conditions. To verify of existing multi-layer elastic analysis of layer interface effect parameters, this study compared outputs by using ABAQUS, a three dimensional finite element program and KENLAYER, multi-layer elastic analysis as vertical load was applied to the surface of asphalt pavements. Pavement performance depending on interface conditions was quantitatively evaluated and fundamental study of layer interface effect parameters was performed in this study. As results of the study, if only vertical loads of moving vehicle is applied, subdivision of either fully bonded or fully unbonded is enough to indicate interface effect parameters. On the other hand, when lateral loads are applied with vertical loads, pavement behavior and performance are greatly changed with respect to layer interface conditions. The thinner thickness of the asphalt layer is and the smaller elastic moduli of the asphalt layer is, the more pavement behavior is influenced by interface conditions. In addition, regression analysis equation analytically computing tensile strain which was considered thicknesses and elastic moduli of the asphalt layer and layer interface effect parameters at the bottom of the asphalt layer was presented using database from numerical analyses on national pavement model sections.

A Study on the Performance Improvement of High-Pylon Extradosed Bridge adopting Fatigue Loading Condition (국내 설계하중의 피로특성을 적용한 고주탑 엑스트라도즈드교의 성능개선에 관한 연구)

  • Lee, Young Jin;Shin, Seung Kyo;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.137-148
    • /
    • 2010
  • This study proposes the optimal ratio of vertical load-carrying capacity (${\beta}$) by investigating structural performances and economic efficiency in the extradosed bridges. Without design standards for the extradosed bridge, Japanese design standards have been used domestically. For the design live load, DL24 is found to be more adequate than DB24. Using the DL24 load, parameter studies are carried out. The parameters are 'main tower height', 'main girder stiffness', and 'cable arrangement'. As a result, it is found that one side cable-stayed extradosed bridges are more economical than double side cable-stayed extradosed bridges. This study also shows that when the ratio of vertical load-carrying capacity(${\beta}$) is 30~50% in the extradosed bridge with the ratio of tower height to main span length 1/6, the extradosed bridge is most economical because of the cable stress less than the allowable stress.

Analytical Evaluation of Residual Strength for Steel Frame in case of Column Member Loss (기둥손실에 따른 철골프레임 잔존내력의 해석적 평가)

  • Park, Hwon-Mo;Yeshewawork, D.;Kim, Hyun-Soo;Choi, Jae-Hyouk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.675-683
    • /
    • 2011
  • When impacts by falling objects are applied to the structures, vertical resisting member(column or column group) results in progressive collapse. By knowing clearly load-deformation relationship of a structural frame, to prevent progressive collapse by absorbing potential energy of falling objects though column groups are lost by the impact of falling object accidently. If residual strength in vertical direction exceeds vertical load, which the sum of the weight of falling objects and usual supportive vertical load as the result of absorbing released location energy, it does not result in progressive collapse. On the other hand, in case when weight of falling objects is included in usual supportive vertical load. In this paper, 1-story 4-spans model is analyzed by non-linear FEM and to examine the level of deterioration, limit analysis of 1-story 4-spans plane frame was carried out.

A Numerical Study on Vertical Load Acting on Corrugated Metal Culvert under Negative Arching Condition (부(-)아칭효과 발현시 파형강판 암거에 작용하는 연직하중에 대한 수치해석적 연구)

  • Lee, Seung-Hyun;Kim, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1271-1276
    • /
    • 2006
  • Vertical loads acting on corrugated metal culverts under negative arching condition were investigated through numerical analyses. Four kinds of corrugated metal culverts with span of 3m were considered in numerical analyses. Also, depths of cover were varied from 1m to 6m with increment of 1m. According to numerical analyses, magnitudes of vertical loads acting on culverts under the condition of negative arching were similar as overburden load on culvert. Furthermore, magnitudes of vertical loads acting on culverts supported by pile foundation were similar as those without pile foundation when depths of cover were less than about 2m. For larger depths of cover which are greater than about two times of span of culvert, magnitudes of vertical loads were slightly larger than those without pile foundation and its tendency becomes more clear as flexural rigidity of corrugated metal increases.

  • PDF

Drift Design Method of High-rise Buildings Considering Design Variable Linking Strategy and Load Combinations (부재 그룹과 하중 조합을 고려한 고층건물 변위조절 설계법)

  • Seo, Ji-Hyun;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.357-367
    • /
    • 2006
  • Drift design methods using resizing algorithms have been presented as a practical drift design method since the resizing algorithms proposed easily find drift contribution of each member, called member displacement participation factor, to lateral drift to be designed without calculation of sensitivity coefficient or re-analysis. Weight of material to be redistributed for minimization of the lateral drift is determined according to the member displacement participation factors. However, resizing algorithms based on energy theorem must consider loading conditions because they have different displacement contribution according to different loading conditions. Furthermore, to improve practicality of resizing algorithms, structural member grouping is required in application of resizing algorithms to drift control of high-rise buildings. In this study, three resizing algorithms on considering load condition and structural member grouping are developed and applied to drift design of a 20-story steel-frame shear-wall structure and a 50-story frame shear-wall system with outriggers.

A Study on the Vertical Bearing Capacity of Pile using the Maximum Curvature Method (최대곡률 방법을 이용한 말뚝의 연직지지력 연구)

  • 류정수;김석열
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.5-12
    • /
    • 1995
  • Although the pile Load test provides various informations to predict the bearing capacity of a pile, it has a considerable difficulty of requiring a large amount of weight to enable the test pile to be loaded sufficiently until the yielding or ultimate load is obtained. Many graphical and mathematical methods have been attempted to estimate the bearing capacity from the result of a vertical load test without loading to failure. In the previous work an analytical method to estimate the failure load using the maxi mum curvature which was based on the Southwell's theory was presented by the author. The failure load, as proposed by Crowther, should be defined as the load at which the predefined that criteria are exceeded. The allowable loads by Davisson's method and DIN 4014 were compared with the loads of piles using the maximum curvature, and this paper proposed the allowable load in which the safety factor of the maximum curvature was 2.5. As a result of study, it was reasonable to conclude that the allowable load determined by the maximum curvature method could estimate the vertical bearing capacity from the pile load test without loading to failure.

  • PDF

Verification of Applicability of Hybrid CFFT Pile for Numerical Analysis (수치해석을 통한 FRP 콘크리트 합성말뚝 적용성 평가)

  • Kim, HongTaek;Lee, MyungJae;Park, JeeWoong;Yoon, SoonJong;Han, YeonJin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.8
    • /
    • pp.59-67
    • /
    • 2011
  • The interaction of the ground deformation and composite piles, which is made of fiber glass, was analyzed for the effective pile application under vertical loads. This study was performed to conduct experimentation test and propose the material characteristics of the new type concrete injection circular FRP pile for the improvement of the defect of CFFT-Concrete composition piles and FRP-Concrete composition piles(FRP reinforced column direction). Additionally, in order to analyze the behaviour characteristics of composite pile and steel pile the numerical analyses were carried out.

An Evaluation of Interface Shear Strength between Geosynthetic Clay Liner and Geomembrane (토목섬유 점토 차수재(GCL)와 지오멤브레인(GM)의 접촉 전단강도 평가)

  • 서민우;김동진;박준범;박인준
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.137-146
    • /
    • 2002
  • Geomembrane, compacted clay liner, and geosynthetic clay liner (GCL) are widely used to prevent leachate from leaking to adjacent geo-environment at a municipal solid waste (MSW) landfill. Interface shear strength between GCL and geomembrane installed at a landfill side slope is important properties for the safe design of side liner or final cover systems. The interface shear strength between two geosynthetics was estimated by a large direct shear test in this study. The shear strength was evaluated by the Mohr-Coulomb failure criterion. The effects of normal stress, hydration or dry condition, and a hydration method were investigated. The test results show that the interface shear strength and shear behavior varied depending up on the level of normal stress, the type of geosynthetic combinations, and a hydration method. When GCLs were sheared after being hydrated under 6kPa loading, the results were consistent with those published by other researchers. Summaries of friction angles, normal stress and hydration condition is presented. These friction angles could be used as a reference value at a site where similar geosynthetics are installed.