• Title/Summary/Keyword: 연약 암반 사면

Search Result 17, Processing Time 0.022 seconds

Measurement of Soft Ground Foundation and Rock Slope Behavior Using Spiral Bolt Strain Gauge (스파이럴 볼트 변형률계를 이용한 연약지반기초 및 암반사면 거동 계측)

  • Kang, Seong-Seung;Hirata, Atsuo;Jeong, Seong-Hoi;Lee, Woo-Ram;Je, Dong-Kwang;Kim, Dae-Hyeon
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.105-111
    • /
    • 2010
  • This study is to consider applicability of spiral bolt strain gauge as an instrument measuring behavior of soft ground foundation and rock slope. When the instrument was installed on the ground, it can be useful to identify the state of ground behavior because it has the characteristics of flexibility, as well as to apply the ground reinforcement because it has higher pull-out resistance to the ground. From the measurement of behavior to soft ground foundation, the strain shows a stable state in the beginning, then was observed significant change in the upper and the middle of spiral bolt strain gauge after 400 days. This is analyzed that ground loosening, which is due to occurred frequent earthquake of magnitude 1~2 with increased rainfall, lead to the instability of the ground. From the measurement of behavior to rock slope, the strain shows a stable state with very little change in a period of 0~50 days and the biggest strain at 4.2 m (P6) in a period of 50~100 days, then other places except P6 was maintained at a stable state in a period of 100~160 days. The reason is analyzed because that blasting for excavated limestone surrounding was affected to the largest at P6. However, based on the size of strain change by behavior of the soft ground foundation and rock slope, it is considered that the present condition are not effected on stability of retaining structure and rock slope. In conclusion, the proposed spiral bolt strain gauge can be useful to measure behavior of soft ground foundation and rock slope, and also to be measured behavior as well as reinforcement of the target ground.

A Study on Characteristics of the Desiccation Shrinkage in Reclaimed Hydraulic Fills (준설매립지반의 건조수축특성에 관한 연구)

  • 홍병만;김상규;김석열;김승욱;김홍택;강인규
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.219-238
    • /
    • 1999
  • In the present study, laboratory tests including the seepage-induced consolidation test, suction test, and desiccation shrinkage test are performed to investigate characteristics of the desiccation shrinkage in reclaimed hydraulic fills. Soil samples for laboratory tests are obtained from three sites (districts of Haenam, Kogeum and Koheung in Chunnam area). Desiccation shrinkage settlement caused by three dimensional volume change is numerically evaluated using finite difference technique based on the governing equation proposed by Abu-Hejleh & Znidarcic. Also characteristics of the desiccation shrinkage analyzed from the test results are used as input data for numerical evaluations. Further predicted total settlements including the self-weight consolidation settlement are compared with values measured at the site of Haenam district. Finally, effects of parameters related to the desiccation shrinkage on settlements are examined.

  • PDF

Development of a Rock Slope Analysis Software Considering Ground Water Level (지하수의 영향을 고려한 사면 해석 소프트웨어 개발)

  • Yang Hyung-Sik;Ha Tae-Wook;Kim Won-Beom;Choi Mi-Jin;Lee Jine-Haeng
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.213-222
    • /
    • 2005
  • In this study, an artificial neural network was used to predict stability of weak rock slopes with various discontinuities and underground water conditions. Input data were provided by UDEC analyses on 108 cases of representative conditions of different slope heights, angles, discontinuity angles and water levels. The verification shows high correlation $(r^2-=0.97)$ between analyses and predictions. The program was able to predict safety factors with the same accuracy from unlearned data sets.

Optimal Measurement System for Weak Rock Slopes in an Open-Pit Mine (노천광 연약 사면에서의 계측시스템 선택을 위한 고찰)

  • SunWoo, Choon;Ryu, Dong-Woo;Jung, Yong-Bok;Park, Do-Hyun
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.157-171
    • /
    • 2012
  • The slope design of an open-pit mine must ensure slope stability and economic feasibility. The overall slope angle of the pit is therefore the main factor of concern because of limited support or reinforcement options available in such a setting. This study examines the optimal measurement system for monitoring the behavior of the slope in an open-pit mine using displacement measurement, data analysis, and numerical simulations for a coal mine at Pasir, Indonesia. The area of slope to be managed is extensive and the maximum displacement, as calculated by numerical analysis, is about 3,000 mm. The displacement data, measured by inclinometer and GPS, were analyzed, and the applicability of SSR (slope stability radar) was reviewed in comparison with other monitoring systems.

Failure Prediction for Weak Rock Slopes in a Large Open-pit Mine by GPS Measurements and Assessment of Landslide Susceptibility (대규모 노천광 연약암반 사면에서의 GPS 계측과 위험도평가에 의한 파괴예측)

  • SunWoo, Choon;Jung, Yong-Bok;Choi, Yo-Soon;Park, Hyeong-Dong
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.243-255
    • /
    • 2010
  • The slope design of an open-pit mine must consider economical efficiency and stability. Thus, the overall slope angle is the principal factor because of limited support or reinforcement options available in such a setting. In this study, slope displacement, as monitored by a GPS system, was analyzed for a coal mine at Pasir, Indonesia. Predictions of failure time by inverse velocity analysis showed good agreement with field observations. Therefore, the failure time of an unstable slope can be roughly estimated prior to failure. A GIS model that combines fuzzy theory and the analytical hierarchy process (AHP) was developed to assess slope instability in open-pit coal mines. This model simultaneously considers seven factors that influence the instability of open-pit slopes (i.e., overall slope gradient, slope height, surface flows, excavation plan, tension cracks, faults, and water body). Application of the proposed method to an open-pit coal mine revealed an enhanced prediction accuracy of failure time and failure site compared with existing methods.

A Laboratory Model Study on the Reactions of the Pore Water Pressure in the Weakened Layer of a Natural Slope by the Confined Groundwater (피압지하수에 의한 자연사면 연약층내의 간극수압 반응에 관한 모형 실험 연구)

  • Jeong, Doo Young;Lee, Kwang Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.583-594
    • /
    • 1994
  • One of the major elements of a natural landslide is the increase of the pore water pressure in a weakened layer. Therefore, the measurement of the pore water pressure in the layer is important. This work is a laboratory model study of the measurement of the pore water pressure with regard to the confined groundwater level, the permeability of the crack zone and the weathering degree of the weakened layer. By the model of the Tertiary period failure type and the Colluvium failure type, the reactions of the pore air pressure and the pore water pressure were measured in the weakened layer according to the permeability of the filter on the condition of the confined groundwater states. On the reaction phase of the pore pressure according to the during time, the Tertiary period failure type proved to be a step type and the Colluvium failure type turned out to be a wave type. The reaction ratios of the pore water pressure in the Tertiary period failure type are higher than the Colluvium failure type, decrease according to increasing of the weathering degree of the weakened layer.

  • PDF

Reliability Analysis of Plane Failure in Rock Slope (암반사면의 평면파괴에 대한 신뢰성해석)

  • 장연수;오승현;김종수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.119-126
    • /
    • 2002
  • A reliability analysis is performed to investigate the influence of the uncertainty from few in-situ samples and inherent heterogeneity of the ground on the probability of failure for a rock cut slope. The results are compared with those of deterministic slope stability analysis. The random variables used are unit weight of the rock, the angle of potential slope of failure, and cohesion and internal friction angle of joints. It was found that the rock slope in which the factor of safety satisfied the minimum safety factor in the deterministic analysis has high probability of failure in the reliability analysis when the weak geological strata are involved in the cut slope. The probability of failure of rock slope is most sensitive to the mean and standard deviation of cohesion in rock joint among the random soil parameters included in the reliability analysis. Sensitivities of the mean values are larger than those of standard deviations, which means that accurate estimation of the mean for the in-situ geotechnical properties is important.

Determination of Critical Slope Height for Large Open-pit Coal Mine and Analysis of Displacement for Slope failure Prediction (대규모 노천 석탄광산의 한계사면높이 결정과 사면파괴 예측을 위한 계측자료 해석)

  • Jung, Yong-Bok;SunWoo, Choon;Lee, Jong-Beom
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.447-456
    • /
    • 2008
  • Open-pit mine slope design must be carried out from the economical efficiency and stability point of view. The overall slope angle is the primary design variable because of limited support or reinforce options available. In this study, the slope angle and critical slope height of large coal mine located in Pasir, Kalimantan, Indonesia were determined from safety point of view. Failure time prediction based on the monitored displacement using inverse velocity was also conducted to make up fir the uncertainty of the slope design. From the study, critical slope height was calculated as $353{\sim}438m$ under safety factor guideline (SF>1.5) and $30^{\circ}$ overall slope angle but loom is recommended as a critical slope height considering the results of sensitivity analysis of strength parameters. The results of inverse velocity analysis also showed good agreement with field slope cases. Therefore, failure of unstable slope can be roughly detected before real slope failure.

Stability Analysis of Open Pit Slopes in the Pasir Coal Field, Indonesia (인도네시아 Pasir 탄전에서의 노천채탄장 사면의 안전성해석)

  • 정소걸;선우춘;한공창;신희순;박연준
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.183-193
    • /
    • 2000
  • A series of studies such as geological logging data analysis, detailed geological survey, rock mass evaluation, in-situ and laboratory tests, rock strength and mechanical properties of the rock were concerned. The stability of the slope were carried out inorder to design the pit slope and individual benches using the stereographic projection analysis and numerical methods in Roto Pit of Pasir coal fetid. The bedding plane was one of the major discontinuities in the Roto Pit and the dip of which is about $60^{\circ}$in the northern part and $83^{\circ}$in the southern part. The dip of bedding becomes steeper from north to south. The plane and toppling failures are presented in many slopes. In laboratory test the average uniaxial compressive strength of mudstone was 9 MPa and that of weak sandstone was 10 MPa. In-situ test showed that the rocks of Roto north mining area are mostly weak enough to be classified in grade from R2(weak) to R3(medium strong weak) and the coal is classified in grades from R1(Very weak) to R2(Weak). The detailed stability analysis were carried out on 4 areas of Roto north(east, west, south and north), and 2 areas of Roto south(east and west). In this paper, the minimum factor of safety was set to 1.2 which is a general criterion for open pit mines. Using the stereographic projection analysis and the limit equilibrium method, slope angles were calculated as 30~$36^{\circ}$for a factor of safety greater than 1.2. Then these results were re-evaluated by numerical analysis using FLAC. The final slope angles were determined by rational described abode. A final slope of 34 degrees can guarantee the stability for the eastern part of the Roto north area, 33 degrees for the western part, 35 degrees for the northern part and 35 degrees for the southern part. For the Roto south area, 36 degrees was suggested for both sides of the pit. Once the pit slope is designed based on the stability analysis and the safety measures. the stability of 니ope should be checked periodically during the mining operations. Because the slope face will be exposed long time to the rain fall, a study such aspreventive measures against weathering and erosion is highly recommended to be implemented.

  • PDF

Stability Analysis of Open Pit Slopes in the Pasir Coal Field, Indonesia (인도네시아 Pasir 탄전에서의 노천채탄장 사면의 안정성 해석)

  • 정소걸;선우춘;한공창;신희순;박연준
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.430-440
    • /
    • 2000
  • A series of studies such as geological logging data analysis, detailed geological survey, rock mass evaluation, in-situ and laboratory tests, rock strength and mechanical properties of the rock were concerned. The stability of the slope were carried out inorder to design the pit slope and individual benches using the stereographic projection analysis and numerical methods in Roto Pit of Pasir coal field. The bedding plane was one of the major discontinuities in the Roto Pit and the dip of which is about 60$^{\circ}$ in the northern part and 83$^{\circ}$ in the southern part. The dip of bedding becomes steeper from north to south. The plane and toppling failures are presented in many slopes. In laboratory test the average uniaxial compressive strength of mudstone was 9MPa and that of weak sandstone was 10MPa. In-situ test showed that the rocks of Roto north mining area are mostly weak enough to be classified in grade from R2(weak) to R3(medium strong weak) and the coal is classified in grades from R1(Very weak) to R2(Weak). The detailed stability analysis were carried out on 4 areas of Roto north (east, west, south and north), and 2 areas of Roto south(east and west). In this paper, the minimum factor of safety was set to 1.2 which is a general criterion for open pit mines. Using the stereographic projection analysis and the limit equilibrium method, slope angles were calculated as 30∼36$^{\circ}$ for a factor of safety greater than 1.2. Then these results were re-evaluated by numerical analysis using FLAC. The final slope angles were determined by rational described above. A final slope of 34 degrees can guarantee the stability for the eastern part of the Roto north area, 33 degrees for the western part, 35 degrees for the northern part and 35 degrees for the southern part. For the Roto south area, 36 degrees was suggested for both sides of the pit. Once the pit slope is designed based on the stability analysis and the safety measures, the stability of slope should be checked periodically during the mining operations. Because the slope face will be exposed long time to the rain fall, a study such aspreventive measures against weathering and erosion is highly recommended to be implemented.

  • PDF