• Title/Summary/Keyword: 연신

Search Result 617, Processing Time 0.025 seconds

Development and Performance Evaluation of Anti-cavitation Paint with a Lamella Glass-flake (판상형 Glass-flake를 이용한 내캐비테이션 도료 개발 및 성능평가)

  • Park, Hyeyoung;Kim, Sung-gil;Kim, Sang-suk;Choi, I-chan;Kim, Byungwoo;Kim, Seung-jin
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.145-151
    • /
    • 2016
  • In response to the cavitation caused by the partial vacuum caused by the fluid flow, a paint was developed by dispersing the lamella-shaped glass-flake in resin for anti-cavitation. This composite paint was developed by using the inorganic filler (lamella shaped glass-flake) and the NBR (Acrylonitrile-butadiene rubber) which was modified epoxy resin. Especially, the glass-flake was a thin film with a thickness of about 100~200 nm and length of about $20{\sim}30{\mu}m$, the aspect ratio was about 200 to 300 times that of the plate-shaped. So the paint for anti-cavitation have shown excellent performance in corrosion resistance. The results of evaluating anti-cavitation performance was below, tensile strength $4.8{\sim}6N/mm^2$ or more, rupture elongation 30% or higher, abrasive speed $10mm^2/h$ or less. In particular, it showed more than twice the superior performance compared to existing advanced foreign products in anti-cavitation performance evaluation.

Effects of Draw Ratio and Additive CaCO3 Content on Properties of High-Performance PE Monofilament (연신비와 첨가제 CaCO3가 PE 모노필라멘트의 물성에 미치는 영향)

  • Park, Eun-Jeong;Kim, Il-Jin;Lee, Dong-Jin;Kim, Jung-Soo;Lee, Young-Hee
    • Fashion & Textile Research Journal
    • /
    • v.23 no.2
    • /
    • pp.290-296
    • /
    • 2021
  • The effect of draw ratio (8, 10, 12, 14 times) and additive CaCO3 content (0, 0.5, 1.0, 1.5, 2.0, and 3.0 wt%) on the properties of high-performance PE monofilament was investigated in this study. As the draw ratio increased (8-14 times), the melting enthalpy (ΔHf), crystallinity, specific gravity, and tensile strength increased significantly. However, the draw ratio had little effect on the melting temperature (Tm) and crystallization temperature (Tc). The seawater fastness (stain and fade) of the hydrophobic PE monofilament prepared in this study showed an excellent grade of 4-5 in all draw ratios. To investigate the effect of the additive CaCO3 content on the properties of high-performance PE monofilament, the draw ratio was fixed at 14 times. It was found that the tensile strength of the PE monofilament sample containing 0.5 wt% of CaCO3 was much greater compared to the sample without CaCO3, but the elongation of the sample containing 0.5 wt% of CaCO3 was much less than the sample with 0 wt% CaCO3. However, in the case of the sample containing more than 0.5 wt% CaCO3, the tensile strength slightly decreased and the elongation slightly increased as the CaCO3 content increased. The seawater fastness (stain and fade) of the hydrophobic PE monofilament showed excellent grades of 4-5, regardless of the amount of additives. From the above results, it was found that the maximum draw ratio of 14 times with an additive of 0.5 wt% CaCO3 are the optimal conditions for manufacturing high-performance marine fusion materials with various fineness (denier) with high strength and low elongation.

Fluoro-illite/polypropylene Composite Fiber Formation and Their Thermal and Mechanical Properties (불소화 일라이트/폴리프로필렌 복합섬유 형성 및 열 및 기계적 특성)

  • Jeong, Euigyung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.467-472
    • /
    • 2011
  • This study investigated illite/polypropylene (PP) composite filament formation via melt-spinning and evaluated their physical properties to prepare functional fibers using natural materials. When composite filaments were formed, the composite filaments exhibited smaller fiber diameters compared to that of neat PP filament because of the lubricant effect of illite induced by its layered structure. Moreover, fluorination effect increased interfacial affinity and dispersion in the polymer, resulting in smaller diameter of fluorinated illite/PP composite filament, which was 2/3 of the neat PP filament diameter. Addition of raw and fluorinated illite improved thermal stability of illite/PP composite filament. Raw illite/PP composite filament cannot be used for a practical application, because it broke during drawing process, whereas the fluorinated illite/PP composite filament can be used for a practical application, because it exhibited similar tensile strength of the neat PP filament and 50% increased modulus. Even with improved illite/PP interfacial affinity and illite dispersion in the polymer, illite/PP composite filament formed microcomposite, because non-expandable illite had strongly bound layers, resulting in only a little illite exfoliation and PP intercalation into illite.

The Slow Strain Rate Dependence of Zircaloy-4 Cladding Tube in Iodine Atmosphere (I) (요드분위기에서 지르칼로이 피복재의 저변형율속도 의존성(I))

  • Choi, Y.;Kang, Y.H.;Ryu, W.S.;Rim, C.S.
    • Nuclear Engineering and Technology
    • /
    • v.17 no.3
    • /
    • pp.211-215
    • /
    • 1985
  • The effects of temperature and strain rate on the I-SCC behaviors of Zircaloy-4 were investigated by constant load test at 30$0^{\circ}C$ and constant elongation rate test at 300, 350 and 40$0^{\circ}C$ in 3.34mg $I_2$/㎤. The results showed that I-SCC susceptibility increased as the strain rate decreased or the temperature increased. The empirical relation between the stress and the time to failure at 30$0^{\circ}C$ was given by 1/ $t_{f}$∝exp (0.3$\sigma$/$\sigma$$_{UTS}$-31.5) When the I-SCC susceptibility was expressed by the ratio of fracture energy in iodine atmosphere to that in the inert atmosphere, severe I-SCC susceptibility was found near 7.6$\times$10$^{-6}$ sec at 30$0^{\circ}C$ and the maximum point of I-SCC susceptibility tended to shift to the higher strain rate with increasing the temperature. The quasi-cleavage fracture was observed in I-SCC fracture surface. From these results, it was certain that the film repture step was involved as an important process in the I-SCC mechanism of Zircaloy-4.4.

  • PDF

Effect of zinc oxide nanoparticle types on the structural, mechanical and antibacterial properties of carrageenan-based composite films (산화아연 나노입자 유형이 카라기난 기반 복합 필름의 구조, 기계적 및 항균 특성에 미치는 영향)

  • Ga Young Shin;Hyo-Lyn Kim;So-Yoon Park;Mi So Park;Chanhyeong Kim;Jae-Young Her
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.126-137
    • /
    • 2024
  • In this study, zinc oxide nanoparticles (ZnONPs) were synthesized using three distinct zinc salts: zinc acetate, zinc chloride, and zinc nitrate. These ZnONPs were subsequently utilized in the fabrication of carrageenan-ZnONPs (Car-ZnONPs) composite films. The study assessed influence of the various ZnONPs on the morphological, water vapor barrier, color, optical, and antimicrobial properties of the Car-ZnONPs composite films. The surface morphology and UV-blocking attributes of the composite films were affected by the type of ZnONPs used, but their surface color, transparency, and chemical structure remained unaltered. The composite film's thickness and elongation at break (EB) significantly increased, while the tensile strength significantly decreased. In contrast, film's elastic modulus (EM) and water vapor permeability coefficient (WVP) showed no significant difference. All the composite films with added ZnONPs demonstrated potent antibacterial activity against Escherichia coli O157:H7 and Listeria monocytogenes . Among the carrageenan-based composite films, Car-ZnONPsZC showed the highest antibacterial and UV-blocking properties, and its elongation at break was significantly higher than that of the pure carrageenan films. This suggests that ZnONPs composite films have the potential to be used as an active packaging film, preserve the safety of the packaged food and extend shelf life.

Catalytic Effects on Graphitized Carbon Fibers of Graphitization Catalysts Introduced during Hot-Water Stretching (열수 연신시 흑연화 촉매 도입에 따른 탄소섬유의 흑연화 촉진효과)

  • Hyun-Jae Cho;Hye Rin Lee;Byoung-Suhk, Kim;Yong-Sik, Chung
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.162-169
    • /
    • 2024
  • In this study, PAN(polyacrylonitrile)-based precursor fibers were produced through a wet-spinning process, and their morphologies and graphitization behavior were investigated in the presence of two graphitization catalysts (Ca, Ni). The graphitization catalysts were introduced into the formed pores during hot-water stretching of wet-spun PAN-based precursor fibers. The catalytic effects of graphitization catalysts were examined through crystal structure and Raman analysis. At a relatively low temperature of 1500℃, the graphitization was not significantly affected, whereas at a high temperature of 2400℃, the obtained ID/IG value of graphite fiber (GF-Ni100) was decreased by about twice (~0.28) compared to the untreated fibers (GF-AS~0.54). By comparing the ID/IG values (GF-Ca100~0.42: GF-Ni100~0.28) of Ca and Ni graphitization catalyst, it was found that the degree of graphitization of Ni graphitization catalyst showed higher influence than that of Ca graphitization catalyst. Moreover, 2D band was also observed, indicating that the graphite plane structures composed of multiple layers were developed. XRD results confirmed that the crystal inter-planar distance (d002) of the graphite crystal was slightly decreased after the treatment with the graphitization catalyst, But, the crystal size of Ca-treated graphite fiber (GF-Ca100) was increased by up to ~5 nm.

A Study on the Synthesis and Properties of Water-Dispersion Polyurethane for Garment Coating Using Nonionic Polyol (비이온 폴리올을 이용한 Garment 코팅용 수분산 폴리우레탄의 합성 및 물성에 관한 연구)

  • Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.83-90
    • /
    • 2017
  • The polyurethane resin used for the garment skin leather surface coating was synthesized by varying the content of polyethylene glycol (PEG) in [NCO] / [OH] mole % ratio. The mechanical properties of the synthesized polyurethane resin were analyzed by SEM, FT-IR, UTM. As the [NCO] / [OH] mole % ratio of nonionic poly ethylene glycol (PEG) increased, there was no change in flexural resistance (dry, wet) and abrasion resistance and tensile strength measurement value were lowered. In contrast, the elongation property values were increased. The result of viscosity measurement showed that the viscosity became thinner with increasing [NCO] / [OH] mole % of PEG.

Effects of Spatial Discretization Schemes on Numerical Solutions of Viscoelastic Fluid Flows (공간차분도식이 점탄성 유체유동의 수치해에 미치는 영향)

  • Min, Tae-Gee;Yoo, Jung-Yul;Choi, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1227-1238
    • /
    • 2000
  • This study examines the effects of the discretization schemes on numerical solutions of viscoelastic fluid flows. For this purpose, a temporally evolving mixing layer, a two-dimensional vortex pair interacting with a wall, and a turbulent channel flow are selected as the test cases. We adopt a fourth-order compact scheme (COM4) for polymeric stress derivatives in the momentum equations. For convective derivatives in the constitutive equations, the first-order upwind difference scheme (UD) and artificial diffusion scheme (AD), which are commonly used in the literature, show most stable and smooth solutions even for highly extensional flows. However, the stress fields are smeared too much and the flow fields are quite different from those obtained by higher-order upwind difference schemes for the same flow parameters. Among higher-order upwind difference schemes, a third-order compact upwind difference scheme (CUD3) shows most stable and accurate solutions. Therefore, a combination of CUD3 for the convective derivatives in the constitutive equations and COM4 for the polymeric stress derivatives in the momentum equations is recommended to be used for numerical simulation of highly extensional flows.

A Comparative Study of Korean and YanBian Korean-Chinese Mother's Parental Role Satisfaction and Child-Rearing Practices (한국과 연변조선족 어머니의 부모역할 만족도 및 양육태도 비교 연구)

  • 임연신;현온강
    • Journal of the Korean Home Economics Association
    • /
    • v.40 no.11
    • /
    • pp.23-37
    • /
    • 2002
  • This study was designed to explore fundamental bases of parental role satisfaction and child-rearing practices by comparing Korean and Yanbian Korean-Chinese mothers who share the same cultural roots but live in societies with different ideology and values. Total of 314 mothers with children aged from three to six years participated in this study:- 160 Korean mothers from two cities in Korea and 154 Korean-Chinese mothers from two cities at YanBian in China. Parental Satisfaction Questionnaires by Hyun (1994) and Child Rearing Practice Measures developed by the researchers were used to measure mothers parental role satisfaction and child rearing practices. The results showed that Korean-Chinese mothers seemed to be more satisfied with their roles as parents than Korean mothers. Additional analyses with socio-economic variables reported that both Korean and Korean-Chinese mothers satisfaction about spousal support were higher and their role conflicts were reduced when the household income was higher. Interestingly, most Korean-Chinese mothers reported to be highly satisfied with spousal support whereas only highly educated Korean mothers seemed to be satisfied with spousal support. In addition, for child-related variables, Korean and Korean-Chinese mothers' parental satisfaction were not affected by their childrens gender or age but when they thought their childrens temperament was difficult, their role-conflict tended to increase.

A Study on the Characterization of Gum Vulcanizates by Strain Energy Function of Hyperelastic Material (가황 고무의 변형 에너지 함수를 통한 재료 특성화 방법에 관한 연구)

  • 박현철;윤성기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1341-1350
    • /
    • 1992
  • This paper addresses the practical problem of finding a useful strain energy function of the incompressible rubberlike materials. It examines methods by which the form of the functions are determined and shows how the selection of experimental data influences the resulting form of the functions. From this information, an optimal choice of the form of energy functions becomes possible. Phenomenological theories used in this paper are limited to elastic, incompressible material models. Due to the nature of the phenomenological methods, these theories are accurate only for the materials treated. However, they serve as a starting basis for the study of more complicated material behaviors.