• Title/Summary/Keyword: 연속체 모델

Search Result 225, Processing Time 0.023 seconds

A Parametric Study on Optimal Earth-Moon Transfer Trajectory Design Using Mixed Impulsive and Continuous Thrust (혼합 추력 방식의 지구-달 최적 전이궤적 설계인자에 따른 비교연구)

  • Lee, Dae-Ro;No, Tae-Soo;Lee, Ji-Marn;Jeon, Gyeong-Eon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.11
    • /
    • pp.1021-1032
    • /
    • 2011
  • This paper presents the results of a parametric study for the design of optimal Earth-Moon transfer trajectory using mixed impulsive and continuous thrust. Various types of the optimal Earth-Moon transfer trajectories were designed by adjusting the relative weight between the impulsive and the continuous thrust, and flight time. Two very different transfer trajectories can be obtained by different combination of design parameters. Furthermore, it was found that all thus designed trajectories permit the ballistic capture by the Moon gravity. Finally, the required thrust profiles are presented and analyzed in detail.

Shear Capacity of Reinforced Concrete Continuous T-Beams Externally Strengthened with Wire Rope Units (와이어로프로 외부 보강된 철근콘크리트 연속 T형 보의 전단내력)

  • Yang, Keun-Hyeok;Sim, Jae-Il;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.773-783
    • /
    • 2007
  • A simple unbonded-type shear strengthening technique for reinforced concrete beams using wire rope units is developed. Six two-span continuous T-beams externally strengthened with wire rope units and an unstrengthened control beam were tested. The main variables investigated were the amount and prestressing force of wire rope units. All specimens had the same geometrical dimension and arrangement of internal reinforcement. Influence of the distribution of vertical stresses in beam web owing to the prestressing force of wire rope units on the diagonal shear cracking load and the ultimate shear capacity of beams tested is presented. Based on the current study, it can be concluded that the amount and initial prestress of wire rope should be limited to be above 2.5 times the minimum shear reinforcement ratio specified in ACI 318-05 and below 0.6 times its own tensile strength, respectively, to ensure the enhancement of shear capacity and ductile failure mode of the strengthened beams. A numerical analysis based on the upper-bound theorem is developed to assess the shear capacity of continuous T-beams strengthened with wire rope units. From the comparisons of measured and predicted shear capacities, a better agreement is achieved in the proposed numerical analysis than in empirical equations recommended by ACI 318-05.

A Case Study of Road Upheaval caused by Slope Movement, and Verification of Reinforcement using Real-Time Monitoring (암반비탈면 활동에 의한 도로 융기현상 사례 연구 및 실시간 모니터링을 이용한 대책공법 검증)

  • Lee, Jong-Hyun;Koo, Ho-Bon;Kim, Seung-Hyun;Kim, Seung-Hee
    • The Journal of Engineering Geology
    • /
    • v.21 no.3
    • /
    • pp.221-230
    • /
    • 2011
  • The movement of rock cut slopes may result in upheaval of an adjacent road. Because most cut slopes consist of rock, road upheaval due to the movement of a cut slope is a rare phenomenon in Korea. We found that the movement of rock slopes which are heavily weathered and with strongly developed weak zones is governed by circular failure of the overall rock formation rather than by failure along discontinuities. The results of a numerical analysis revealed that the application of a ubiquitous joint model in a continuum analysis is appropriate for anisotropic rocks (e.g., schist) and for slopes for which the stability is influenced by a particular discontinuity. The results of a field investigation and numerical analyses suggest that retaining walls and anchors should be used to stabilize rock slopes and that real-time monitoring equipment should be installed to assess the reinforcing effect of the remedial measures.

A Performance Characteristics of the Thruster Nozzle for Attitude Control of Space Vehicle According to Flight Altitude (우주비행체 자세제어용 추력기 노즐의 비행고도 변이별 추력성능 특성 해석)

  • Kam, Ho-Dong;Choi, Hyun-Ah;Kim, Jeong-Soo;Bae, Dae-Seok;Kim, In-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.167-171
    • /
    • 2012
  • A computational analysis of nozzle flow is conducted to investigate effects of the flight altitude on thrust performance. Reynolds-averaged Navier-Stokes equation with k-${\omega}$ SST(Shear Stress Transport) turbulence model is employed to simulate the nozzle flow in various altitude conditions, where continuum mechanics is to be valid. Thrust performance of the nozzle is exceedingly poor upto 10 km of flight altitude because of the irreversible phenomena such as shock and/or flow separation occurring inside the nozzle, whereas it is restored to the nominal value as the altitude is attained higher than 30 km.

  • PDF

A Statistical-Mechanical Model for Solutions of Monodisperse Micelles (단분산 마이셀 용액의 통계 역학적 모델)

  • Kang, Kye-Hong;Lim, Kyung-Hee
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.824-832
    • /
    • 2008
  • micellar solution which is comprised of surfactant monomers, monodisperse micelles, and solvent(water) is studied from a statistical-mechanical point of view. The model examined in this article is for the ideal mixture of monomers, micelles, and solvent with the dielectric constant identical to that of solvent, which is an assumption common to continuum models. The model also reflects interactions between monomer and solvent molecule, and also between micelle and solvent molecule. The statistical-mechanical model under consideration yields ln $X_{CMC}=A+BT+C/T+D{\ln}T$ with $X_{CMC}$ being critical mcielle concentration (in mole fraction), being temperature, and A, B, C, D being constants which depend on the properties of the surfactant molecules. The statistical-mechanical model discussed in this article provides a theoretical basis on the thermal dependence of critical micelle concentration

The effect of tunnel ovality on the dynamic behavior of segment lining (Ovality가 세그먼트 라이닝의 동적 거동 특성에 미치는 영향)

  • Gyeong-Ju Yi;Ki-Il Song
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.423-446
    • /
    • 2023
  • Shield TBM tunnel linings are segmented into segments and rings. This study investigates the response characteristics of the stress and displacement of the segment lining under seismic waves through modeling that considers the interface behavior between segments by applying a shell interface element to the contact surface between segments and rings. And there is no management criteria for ovaling deformation of segment linings in Korea. So, this study the ovality criteria and meaning of segment lining. The results of study showed that the distribution patterns of stress and displacement under seismic waves were similar between continuous linings and segment linings. However, the maximum values of stress and displacement showed differences from segment linings. The stress distribution of the continuous lining modeled as a shell type has a stress distribution that has continuity in the 3D cylindrical shape, but the segment lining is concentrated outside the segment, and the largest stress occurs at the location where the contact surface between the segment and the ring is concentrated. This intermittent and localized stress distribution shows an increasing as the ovality of the lining increases at seismic waves. The ovality at which the increase in stress distribution begins to show irregularity and localization is about 150‰. Ovality of 150‰ is an unrealistic value that cannot represent actual lining deformation. Therefore, the ovality of the segment lining increase with depth, but it does not have a significant impact on the stability caused by seismic load.

A New Thpe of Recurrent Neural Network for the Umprovement of Pattern Recobnition Ability (패턴 인식 성능을 향상시키는 새로운 형태의 순환신경망)

  • Jeong, Nak-U;Kim, Byeong-Gi
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.2
    • /
    • pp.401-408
    • /
    • 1997
  • Human gets almist all of his knoweledge from the recognition and the accumulation of input patterns,image or sound,the he gets theough his eyes and through his ears.Among these means,his chracter recognition,an ability that allows him to recognize characters and understand their meanings through visual information, is now applied to a pattern recognition system using neural network in computer. Recurrent neural network is one of those models that reuse the output value in neural network learning.Recently many studies try to apply this recurrent neural network to the classification of static patterns like off-line handwritten characters. But most of their efforts are not so drrdtive until now.This stusy suggests a new type of recurrent neural network for an deedctive classification of the static patterns such as off-line handwritten chracters.Using the new J-E(Jordan-Elman)neural network model that enlarges and combines Jordan Model and Elman Model,this new type is better than those of before in recobnizing the static patterms such as figures and handwritten-characters.

  • PDF

Shape Design Sensitivity Analysis Using Isogeometric Approach (등기하 해석법을 이용한 설계 민감도 해석)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.339-345
    • /
    • 2007
  • In this paper, a variational formulation for plane elasticity problems is derived based on an isogeometric approach. The isogeometric analysis is an emerging methodology such that the basis functions for response analysis are generated directly from NURBS (Non-Uniform Rational B-Splines) geometry. Furthermore, the solution space for the response analysis can be represented in terms of the same functions to represent the geometry, which enables to provide a precise construction method of finite element model to exactly represent geometry using B-spline base functions in CAD geometric modeling and analyze arbitrarily shaped structures without re-meshing. In this paper, a continuum-based adjoint sensitivity analysis method using the isogeometric approach is extensively derived for the plane elasticity problems. The conventional shape optimization using the finite element method has some difficulties in the parameterization of geometry In the isogeometric analysis, however, the geometric properties are already embedded in the B-spline basis functions and control points so that it has potential capability to overcome the aforementioned difficulties. Through some numerical examples, the developed isogeometric sensitivity analysis method is verified to show excellent agreement with finite difference sensitivity.

Verification of Parameters Influencing Bond Strength between Fiber-Reinforced Polymer Laminates and Concrete (연속섬유(FRP)시트와 콘크리트의 부착강도 영향 요인 검증)

  • Ko, Hune-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.414-423
    • /
    • 2020
  • Fiber-reinforced polymer (FRP) laminate sheets, which are lightweight with high strength, are commonly used to reinforce concrete structures. The bonding strength is vital in structural design. Therefore, experiments and analytical studies with differing variables (concrete compressive strength and tensile strength, the elastic modulus of concrete and FRP, thickness of concrete and FRP, width of concrete and FRP, bond length, effective bond length, fracture energy, maximum bond stress, maximum slip) have been conducted to obtain an accurate numerical model of the bond strength between an FRP sheet and concrete. Although many models have been proposed, no validated model has emerged that could be used easily in practice. Therefore, this study analyzed the parameters that influence the bond strength that were used in 23 of the proposed models (Khalifa model, Iso model, Maeda model, Chen model, etc.) and compared them to the test results of 188 specimens via the numerical results of each model. As a result, an easy-to-use practical model with a simple and high degree of expression was proposed based on the Iso model combined with the effective bond length model that was proposed by Holzenkӓmpfer.

Analysis of an Inspection Process Allowing Consecutive Two-time Testing of Products Using Markov Chains (연속되는 이중 검사를 허용하는 제품품질검사 프로세스에 대한 마르코프 체인을 이용한 분석)

  • Ko, Jeong-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2452-2457
    • /
    • 2012
  • When a quality inspection process rejects a product unit, consecutive repeated inspections are sometimes conducted for the rejected unit to reduce a false reject possibility. This paper analyzes a special inspection process that allows up to two times of consecutive testing for each product to decrease type I inspection errors. This study uses a Markov chain to model the steps of the inspection process and a product unit's quality states during inspection. Historical inspection results from a company are used as the data for the Markov chain model. Using the Markov chain model and data, this study analyzes the effect of this special inspection rule on the proportion of the final quality levels and scrap rate. The results demonstrate that this inspection process of possible double testing could help reduce unnecessary rejects and consequently decrease material and production costs.