• Title/Summary/Keyword: 연속열역학

Search Result 35, Processing Time 0.094 seconds

A Numerical Study on Thermo-hydro-mechanical Coupling in Continuum Rock Mass Based on the Biot′s Consolidation Theory (Biot의 압밀 이론에 근거한 연속체 암반의 열-수리-역학 상호작용의 수치적 연구)

  • 이희석;양주호
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.105-115
    • /
    • 2000
  • As large underground projects such as radioactive waste disposal, hot water and heat storage, and geothermal energy become influential, the study, which consider all aspects of thermics, hydraulics and mechanics would be needed. Thermo Hydro-Mechanical coupling analysis is one of the most complex numerical technique because it should be implemented with the combined three governing equations to analyze the behavior of rock mass. In this study, finite element code, which is based on Biot's consolidation theory, was developed to analyze the thermo-hydro-mechanical coupling in continuum rock mass. To verify the implemented program, one-dimensional consolidation model under the isothermal and non-isothermal conditions was analyzed and was compared with the analytic solution. The parametric study on two-dimensional consolidation was also performed and the effects of several factors such as poisson's ratio and hydraulic anisotropy on rock mass behavior were investigated. In the future, this program would be revised to be used for analysis of general discontinuous media with incorporating discrete joint model.

  • PDF

A Numerical Study on Thermo-hydro-mechanical Coupling in Continuum Rock Mass Based on the Biot's Consolidation Theory (Biot의 압밀 이론에 근거한 연속체 암반의 열-수리-역학 상호작용의 수치적 연구)

  • 이희석;양주호
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.355-365
    • /
    • 2000
  • As large underground projects such as radioactive waste disposal, hot water and heat storage, and geothermal energy become influential, the study, which consider all aspects of thermics, hydraulics and mechanics would be needed. Thermo-Hydro-Mechanical coupling analysis is one of the most complex numerical technique because it should be implemented with the combined three governing equations to analyze the behavior of rock mass. In this study, finite element code, which is based on Biot's consolidation theory, was developed to analyze the thermo-hydro-mechanical coupling in continuum rock mass. To verify the implemented program, one-dimensional consolidation model under the isothermal and non-isothermal conditions was analyzed and was compared with the analytic solution. The parametric study on two-dimensional consolidation was also performed and the effects of several factors such as poisson's ratio and hydraulic anisotropy on rock mass behavior were investigated. In the future, this program would be revised to be used for analysis of general discontinuous media with incorporating discrete joint model.

  • PDF

Phase Equilibria in Multicomponent Mixtures using Continuous Thermodynamics (연속열역학을 이용한 다성분 혼합물의 상평형)

  • Yong, Pyeong-Soon;Kim, Ki-Chang;Kwon, Yong Jung
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.267-275
    • /
    • 1998
  • Continuous thermodynamics has been applied for modeling of phase equilibria in multicomponent mixtures, to avoid disadvantages of the pseudo-component and key-component method. In this paper continuous thermodynamic relations formulated by using the Pate-Teja equation of state were adopted for calculations of phase equilibria in natural gas mixtures, crude oil mixtures and mixtures extracted by supercritical $CO_2$ fluids. Calculations of phase equilibria were performed by two procedures ; a moment method coupled with the beta distribution function and a quadrature method combined with Gaussian-Legendre polynomials. Calculated results were compared with experimental data. It was showed that continuous thermodynamic frameworks considered in this paper were well-matched to experimental data.

  • PDF

連續體力學의 基礎的 槪要(II)

  • 박진무
    • Journal of the KSME
    • /
    • v.26 no.3
    • /
    • pp.214-218
    • /
    • 1986
  • 제 4절에서 얻은 연속체 일반의 장방정식들을 제 5절에서와 같이 각종 물질의 구성방정식으로 보충하므로써, 탄성이론, Newton 유체역학, 비 Newton 유체역학, 소성이론, 점탄성이론, 비균질 체역학, 연속체 일반의 열역학 ...등의 기본적 이론체계를 구성할 수 있다. 또 합당한 경계조건과 함께 구체적 해를 얻는 다양한 연구로 이어진다. 이에 대한 독자의 편의를 위하여 몇 개의 문 헌을 뒤에 나열한다. (8,15,16,17,18,19) 공학의 한 분야에 전문적인 지식을 얻기 위해서는 공학 일반(engineering science)에 대한 선명한 이해가 필수적이며 이를 위해 연속체이론이 꾸준히 연구되고 있다. 그러나 이와 같은 방대한 체계를 $E_{3}$ 해석학의 틀 속에서 선명하게 파악 하려하는 것은 어려운 일이다. 결국 대역적해석학(global analysis)의 응용(3,5,20,21,22)이 불가 피하지 않나 생각된다. 이 방향의 연구가 선진국에서도 아직 소수의 학자들에 국한된 실정이나, 우리 공학의 획기적 발전을 위하여 독자들의 노력이 계속되었으면 한다.

  • PDF

Thermodynamics of Mixtures (I). Ideal Gases (혼합물의 열역학 (제1보). 이상기체)

  • C. K. Yun
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.324-331
    • /
    • 1973
  • We study a mixture of ideal gases by use of recently developed methods in continuum thermodynamics of irreversible processes. A complete form of the free energy function and the gas law for each component are derived directly from an entropy production inequality by assuming that: (1) Constitutive functions depend on the mass densities, the diffusion velocities, the temperature and its gradient only. (2) Phenomenological coefficients appearing in an extra entropy flux are material constants. (3) The internal energy density per unit mass is independent of the total mass density (Joule).

  • PDF

Numerical Verification for Plane Failure of Rock Slopes Using Implicit Joint-Continuum Model (내재적 절리-연속체 모델을 이용한 암반사면 평면파괴의 수치해석적 검증)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.125-132
    • /
    • 2020
  • Embedded joints in the rock mass are a major constituent influencing its mechanical behavior. Numerical analysis requires a rigorous modeling methodology for the rock mass with detailed information regarding joint properties, orientation, spacing, and persistence. This paper provides a mechanical model for a jointed rock mass based on the implicit joint-continuum approach. Stiffness tensors for rock mass are evaluated for an assemblage of intact rock separated by sets of joint planes. It is a linear summation of compliance of each joint sets and intact rock in the serial stiffness system. In the application example, kinematic analysis for a planar failure of rock slope is comparable with empirical daylight envelope and its lateral limits. Since the developed implicit joint-continuity model is formulated on a continuum basis, it will be a major tool for the numerical simulations adopting published plenteous thermal-hydro-chemical experimental results.

내열성 방염직물의 역학 특성과 수분전달 특성

  • 정유미;안승국
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.426-429
    • /
    • 1998
  • 의복의 여러 가지 기능 중 하나는 인간을 열이나 추운 환경으로부터 보호하는 것이다. 이러한 의복 중 방염직물(flame-resistant fabrics)은 산업적으로 열과 접촉하거나 위험한 환경에서 작업하는 작업자들을 열로부터 보호하는 중요한 역할을 하고 있다. 내열성 방염직물로 만들어진 작업복이 요구되어 지는 작업환경은 제철소에서와 같이 연속적으로 위험성이 있는 곳과 비행기 사고나 건물화재와 같은 잠재 위험성이 있는 곳 등이다[1]. (중략)

  • PDF

Characterization of Thickness and Thermoelastic Properties of Interphase in Polymer Nanocomposites using Multiscale Analysis (멀티스케일 해석을 통한 고분자 나노복합재의 계면 상 두께와 열탄성 물성 도출)

  • Choi, Joonmyung;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.577-582
    • /
    • 2016
  • In this study, a multiscale method for solving a thermoelasticity problem for interphase in the polymeric nanocomposites is developed. Molecular dynamics simulation and finite element analysis were numerically combined to describe the geometrical boundaries and the local mechanical response of the interfacial region where the polymer networks were highly interacted with the nanoparticle surface. Also, the micrmechanical thermoelasticity equations were applied to the obtained equivalent continuum unit to compute the growth of interphase thickness according to the size of nanoparticles, as well as the thermal phase transition behavior at a wide range of temperatures. Accordingly, the equivalent continuum model obtained from the multiscale analysis provides a meaningful description of the thermoelastic behavior of interphase as well as its nanoparticle size effect on thermoelasticity at both below and above the glass transition temperature.

Phase Separations in Random Copolymer Solutions by Continuous Thermodynamics (연속열역학을 이용한 랜덤공중합체 용액의 상분리)

  • Sheo, Shin-Ho;Kim, Ki-Chang;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.277-287
    • /
    • 1998
  • In this work continuous thermodynamics was adopted for describing the influence of copolymer polydispersity on phase separations in random copolymer solutions. Continuous themodynamic frameworks were formulated using the Flory-Huggin's excess Gibbs free energy model in which the concentration- and temperature-depentent terms of interaction parameter x were modified. Cloud-point curves and coexistence curves of poly(ethylene-vinylactate)/methylacetate solutions and poly(ehtylene-vinylacetate)/ethylacetate solutions were measured, and experimental data were fitted with theoretical relations formulated in this work. Calculated could-point curves were more good ageeable with experimental data than the modified Flory-Huggins's relations. Coexistence curves which were evaluated by using parameters of x estimated from experimental cloud-point curves, were found to coincide with experimental data.

  • PDF

Voronoi Grain-Based Distinct Element Modeling of Thermally Induced Fracture Slip: DECOVALEX-2023 Task G (Benchmark Simulation) (Voronoi 입자기반 개별요소모델을 이용한 암석 균열의 열에 의한 미끄러짐 해석: 국제공동연구 DECOVALEX-2023 Task G(Benchmark simulation))

  • park, Jung-Wook;Park, Chan-Hee;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.593-609
    • /
    • 2021
  • We proposed a numerical method for the thermo-mechanical behavior of rock fracture using a grain-based distinct element model (GBDEM) and simulated thermally induced fracture slip. The present study is the benchmark simulation performed as part of DECOVALEX-2023 Task G, which aims to develop a numerical method to estimate the coupled thermo-hydro-mechanical processes within the crystalline rock fracture network. We represented the rock sample as an assembly of Voronoi grains and calculated the interaction of the grains (blocks) and their interfaces (contacts) using a distinct element code, 3DEC. Based on an equivalent continuum approach, the micro-parameters of grains and contacts were determined to reproduce rock as an elastic material. Then, the behavior of the fracture embedded in the rock was characterized by the contacts with Coulomb shear strength and tensile strength. In the benchmark simulation, we quantitatively examined the effects of the boundary stress and thermal stress due to heat conduction on fracture behavior, focusing on the mechanism of thermally induced fracture slip. The simulation results showed that the developed numerical model reasonably reproduced the thermal expansion and thermal stress increment, the fracture stress and displacement and the effect of boundary condition. We expect the numerical model to be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated in further study experiments.