연속 반복되는 시스템에서 제어하는 제어기 repetitive controller를 설계하는 방법과 시스템 안정성을 소개하고자 한다. 제어기는 반복함수로서 수렴을 조장하는 비용함수를 주파수영역에서 최소화함으로써 유도할 수 있다. 모의실험은 제안된 단수모형설계 기법을 이용한 RC를 어떻게 유도하는 것을 보여 주고 있다.
본 논문은 시스템 인자의 변위에 강인한 연속반복학습제어기(Repetitive Controller RC)를 설계하는 방법을 소개하고자 한다. 이 때 사용되는 불확실 인자들은 확률분포함수에 의해 무작위로 설정되게 된다. 분포함수를 직접 적용하는 대신 본 제어기는 설정된 확률함수로부터 생성된 모형을 기본으로 설계하였다. 이러한 복수모형 설계 기법으로 임의의 분포함수로 구성된 수많은 불확실 인자들을 다룰 수 있다. 그러므로, 제어기는 반복영역에서 수렴성을 보장하는 비용함수를 주파수영역에서 최소화함으로써 유도할 수 있다. 모의실험은 제안된 복수모형설계 기법으로 구한 RC가 단수모형 설계기법을 이용한 RC보다 강인한 것을 보여 주고 있다.
본 논문은 다물체 복합시스템 인자의 변위에 강인한 중앙집중식 연속반복학습제어기(Repetitive Controller, RC)를 설계하는 방법을 소개하고자 한다. 이때 사용되는 불확실 인자들은 확률분포함수에 의해 무작위로 설정되게 된다. 분포함수를 직접 적용하는 대신, 본 제어기는 설정된 확률함수로부터 생성된 모형을 기본으로 설계하였다. 이러한 중앙집중식 복수모형 설계기법으로 엄의의 분포함수로 구성된 수많은 불확실 인자들을 다룰 수 있다. 그러므로, 제어기는 반복영역에서 수렴성을 보장하는 비용함수를 주파수영역에서 최소화함으로써 유도할 수 있다. 다물체 복합시스템에서 중앙집중식 복수모형설계 기법을 단수모형 설계기법과 함께 제안하였다.
반복 학습제어시스템은 시행을 반복함으로써 유한시간의 목표출력에 대하여 추종해 가도록 하는 것이다. 본 논문에서는 이산시간 시스템에 있어서의 이산 시간 학습제어 입력을 구하는 방법을 제안한다. 여기서 현재시행의 제어입력은 바로 전시행에서 입력 sequence와 time-shift된 error sequence의 선형조합에 의하여 구해진다. 컴퓨터로 제어되는 이산시간 시스템에서 error신호의 미분조작이 필요한 연속시간 Betterment Process에 비하여 error sequence의 time-shift조작은 보다 간단해지며 컴퓨터 시뮬레이션을 통하여 그 유효성을 확인하였다.
본 논문에서는 피드백 사용형 2차 반복 학습제어 방법이 수렴 성능의 향상과 외란에 대한 강인성 향상에 덧붙여 학습제어의 피드백 항을 이용함으로써 초기 조건 오차가 있음에도 불구하고 이를 극복할 뿐만 아니라 기존의 알고리즘보다 더 빠른 수렴 능력이 있음을 확인한다. 또한 불안정한 결과를 낳는 높은 학습 제어 게인의 경우에도 피드백 항을 추가한 본 학습제어 방법에 의해 안정화됨으로써, 빠른 응답 특성과 강인성 향상을 가져올 수 있음을 보인다. 그리고 본 알고리즘을 선형 시변 연속 시스템이 적용된 모델 시스템을 설계하여 이를 통한 시뮬레이션 결과로서 초기 조건 오차의 극복 능력이 뛰어남을 확인하고 시스템의 안정화와 강인성 향상에 기여함을 확인한다.
반복 학습 제어에서 수렴 조건은 수렴 속도와 잔존 오차와 같은 성능을 결정한다. 따라서, 덜 신중한 수렴 조건을 구할 수 있다면, 그 성능은 향상될 것이고 사용 적합한 학습 제어기의 수는 증가된다. 주파수 영역에서, 연속적인 오차들간의 전달 함수의 $H_{\infty}$ 놈(norm)을 학습 시스템의 수렴성을 조사하기 위해 사용해왔다. 그러나, $H_{\infty}$ 놈을 바탕으로 한 수렴 조건이 단조 수렴성에 대하여 명확한 특성을 가진다하더라도, 특히, 다중 입출력 시스템에서 몇 가지 단점을 가진다. 본 논문에서 는 수렴 조건과 수렴의 단조성간의 관계를 밝힌다. 또한 주파수 영역에서 기존의 수렴 조건을 대신할 수 있는 수정된 수렴 조건을 주파수 영역 리아프노프(Lyapunov) 방정식을 이용하여 구한다.
신경망을 이용하는 연속 음성 인식에서 학습이라 함은 인위적으로 분할된 음성 데이타를 토대로 진행되는 것이 지배적이었다. 그러나 분할된 음성데이타를 마련하기 위해서는 많은 시간과 노력, 숙련 등을 요구할 뿐만아니라 그 자체가 인식도메인의 변화나 확장을 어렵게 하는 하나의 요인 되기도 한다. 그래서 분할된 음성데이타의 사용을 가급적 피하고 그러면서도 성능을 떨어뜨리지 않는 신경망 학습법들이 나타나고 있다. 본 논문에서는 학습된 인식기를 이용하여 자동으로 한국어 음성데이타를 분할한 후 그 분할된 데이타를 이용하여 다시 인식기를 재학습시켜나가는 반복 과정을 소개하고자 한다. 여기에는 TDNN이 인식기로 사용되며 인식단위는 음소이다. 학습은 cross-validation 기법을 이용하여 제어된다.
강화학습의 대표적인 알고리즘인 Q-Learning은 상태공간의 모든 상태-행동 쌍(state-action pairs)의 평가값이 수렴할 때까지 반복해서 경험하여 최적의 전략(policy)을 얻는다. 상태공간을 구성하는 요소(feature)들이 많거나 요소의 데이타 형태가 연속형(continuous)인 경우, 상태공간은 지수적으로 증가하게 되어, 모든 상태들을 반복해서 경험해야 하고 모든 상태-행동 쌍의 Q값을 저장하는 것은 시간과 메모리에 있어서 어려운 문제이다. 본 논문에서는 온라인으로 학습을 진행하면서 비슷한 상황의 상태들을 클러스터링(clustering)하고 새로운 경험에 적응해서 클러스터(cluster)의 수정(update)을 반복하여, 분류된 최적의 전략(policy)을 얻는 새로운 함수근사(function approximation)방법인 Q-Map을 소개한다. 클러스터링으로 인해 정교한 제어가 필요한 상태(state)는 규칙(rule)으로 추출하여 보완하였다. 미로환경과 마운틴 카 문제를 제안한 Q-Map으로 실험한 결과 분류된 지식을 얻을 수 있었으며 가시화된(explicit) 지식의 형태인 규칙(rule)으로도 쉽게 변환할 수 있었다.
석유화학공업으로 대표되는 공정산업의 연속공정들은 지난 20여 년간 모델예측제어를 중심으로 고급제어(APC)기법들이 도입되며 운전성 및 생산성 향상에 많은 진보를 이루었다. 이에 반하여 중합반응기를 비롯한 각종 회분공정에는 APC 기법의 도입이 아직 활발히 이루어지지 않고 있다. 이것은 회분공정의 독특한 문제점을 극복하며 원하는 성능을 보장할 수 있는 방법론이 제시되지 못한 데에 가장 큰 이유가 있다고 할 수 있다. 그러나 최근 이러한 문제점들을 극복할 수 있는 APC 기법들이 반복학습제어(ILC)에 근거하여 개발되며 회분공정 APC 환경에 큰 변화가 일어나고 있다. 본 논문에서는 이들 기법들이 다양한 실제 공정에 활발하게 적용되어 운전을 개선할 수 있기를 기대하며, ILC를 기반으로 한 최근의 회분공정 APC 연구동향을 이론과 실례를 통해 소개한다.
연속 영상을 이용하여 실시간으로 움직임 객체를 추출하고 추적하기 위해 배경분리(Background Subtraction) 기법을 주로 사용한다. 외부 환경에서는 조명의 변화, 나무의 흔들림과 같은 반복적인 움직임 그리고 급격히 움직이는 객체 등과 같이 고려해야할 많은 환경 변화 요인들이 존재한다. 이러한 외부 환경의 변화를 적응적으로 반영하여 배경을 분리할 수 있는 배경 모델로는 주로 가우시안 혼합 모델(GMM: Gaussian Mixture Model)이 적용되고 있으며, 실시간 성능 등을 개선시킨 적응적 가우시안 혼합 모델 등이 사용되고 있다. 본 논문은 개선된 적응적 가우시안 혼합 모델을 적용하고 고정된 학습률 ${\alpha}$(일반적으로 작은 값)을 사용함으로써 물체의 갑작스러운 움직임 등에 빠르게 적응하지 못하는 문제점을 해결하기 위해 가우시안 분포 수의 적응적 조절 기능과 픽셀 값을 분산을 이용하여 학습률 ${\alpha}$값을 동적으로 제어하는 방법을 제안하고 성능을 평가하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.