• Title/Summary/Keyword: 연속굴착형 쉴드 TBM

Search Result 2, Processing Time 0.008 seconds

Risk assessment for development of consecutive shield TBM technology (연속굴착형 쉴드 TBM 기술 개발을 위한 리스크 평가)

  • Kibeom Kwon;Hangseok Choi;Chaemin Hwang;Sangyeong Park;Byeonghyun Hwang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.4
    • /
    • pp.303-314
    • /
    • 2024
  • Recently, the consecutive shield tunnel boring machine (TBM) has gained attention for its potential to enhance TBM penetration rates. However, its development requires a thorough risk assessment due to the unconventional nature of its equipment and hydraulic systems, coupled with the absence of design or construction precedents. This study investigated the causal relationships between four accidents and eight relevant sources associated with the consecutive shield TBM. Subsequently, risk levels were determined based on expert surveys and a risk matrix technique. The findings highlighted significant impacts associated with collapses or surface settlements and the likelihood of causal combinations leading to misalignment. Specifically, this study emphasized the importance of proactive mitigation measures to address collapses or surface settlements caused by inadequate continuous tail void backfill or damaged thrust jacks. Furthermore, it is recommended to develop advanced non-destructive testing technology capable of comprehensive range detection across helical segments, to design a sequential thrust jack propulsion system, and to determine an optimal pedestal angle.

Continuous Excavation Type TBM Parts Modification and Control Technology for Improving TBM Performance (TBM 굴진향상을 위한 연속굴착형 TBM 부품개조 및 제어기술 소개)

  • Young-Tae, Choi;Dong-Geon, Lee;Mun-Gyu, Kim;Joo-Young, Oh;Jung-Woo, Cho
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.345-352
    • /
    • 2022
  • The existing NATM (New Austrian Tunneling Method) has induced civil compliants due to blasting vibration and noise. Machanized excavation methods such as TBM (Tunnel Boring Machine) are being adopted in the planning and construction of tunneling projects. Shield TBM method is composed of repetition processes of TBM excavation and segment installation, the machine has to be stopped during the later process. Consecutive excavation technology using helical segment is under developing to minimize the stoppage time. The modification of thrust jacks and module are planned to ensure the advance force acting on the inclined surface of helical segment. Also, the integrated system design of hydraulic circuit will be remodeled. This means that the system deactivate the jacks on the installing segment while the others automatically act the thrusting forces on the existing segments. This report briefly introduces the mechanical research part of the current consecutive excavation technological development project of TBM.