• Title/Summary/Keyword: 연소 조건

Search Result 1,243, Processing Time 0.023 seconds

Thermal Behaviors and Reaction Characteristics of an Integrated Reactor with Catalytic Combustion-Reforming According to Operation Conditions (운전조건 변경에 따른 통합형 촉매연소-개질반응기의 열적 거동 및 반응 특성)

  • Ghang, Tae-Gyu;Lee, Sang-Min;Ahn, Kook-Young;Kim, Yong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.641-648
    • /
    • 2011
  • Off-gases emitted from the anode of a molten carbonate fuel cell (MCFC) at high temperatures for power generation are used as fuel in catalytic combustion. The heat generated in the catalytic combustor is utilized as the heat for the endothermic reaction required for steam reforming. Among the various operational conditions of the integrated reactor, we varied the inlet gas compositions of the catalytic combustor according to fuel utilization in the MCFC and the ratio of steam to carbon in the reformer. Subsequently, the thermal behaviors and reaction characteristics of the integrated reactor were investigated experimentally. The fundamental data from this experimental study will be useful for the design and fabrication of a more practical integrated reactor in the future.

DC-shift Instability in Hybrid rocket (하이브리드 로켓의 DC-shift 불안정 발생 특성)

  • Kang, Dong-Hoon;Lee, Chang-Jin;Monkhinoo, Monkhinoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.229-232
    • /
    • 2009
  • DC-shift phenomenon can be observed in Hybrid rocket combustion. This phenomenon makes performance drop which is structure problem or reduce thrust. Understanding of DC-shift phenomenon, the conditions of the hybrid rocket combustion stability can be found. In this paper, the condition of DC-shift was found and made by using acoustic mode and vortex shedding frequency. The conditions of stable combustion was defined from the experimental study of DC-shift phenomenon.

  • PDF

Combustion Stability Rating Test of Liquid Rocket Engine Thrust Chamber (액체로켓엔진 연소기 연소안정성 평가시험)

  • Ahn, Kyubok;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.60-66
    • /
    • 2014
  • As a evaluation method of combustion stability in a liquid rocket engine thrust chamber, external disturbance devices are used. In the paper, the study on pulse-gun ignition tests for a combustion stability rating test of a thrust chamber was performed. Charging volume of pulse-guns was determined by confirming the intensities of the pressure waves from the ignition tests in the cold-flow conditions. While using same injector head, combustion instabilities were not encountered during 14 hot-firing tests without pulse-guns but combustion instabilities were triggered by pulse-gun ignition during 2 hot-firing tests. The results showed that the pulse-gun ignition test could be the evaluation method and could reduce the hot-firing test number for the stability rating of a thrust chamber.

Combustion Characteristics of Landfill Gas in Constant Volume Combustion Chamber for Large Displacement Volume Engine (II) - Combustion Analysis - (대형기관 모사 정적연소실에서 매립지 가스의 연소특성에 대한 연구 (II) - 연소 분석 -)

  • Kwon, Soon Tae;Park, Chanjun;Ohm, Inyong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.743-752
    • /
    • 2013
  • This is the second paper on the combustion characteristics of landfill gas in a constant volume combustion chamber for a large displacement volume commercial engine, and it discusses the combustion process on the basis of pressure measurements. The results show that the bimodal peak pressure phenomenon, which is caused by the interaction of the heat release and the heat transfer, is more apparent as the mixtures are more favorable to combustion, and the magnitudes of the pressures depend on the unburned fraction. In addition, there exist four main inflection points during heat release owing to variations in the heat transfer area related to flame propagation from the ignition point. Furthermore, the number of inflection points increases as the mixture quality worsens because of the extended burn duration. Consequently, the sophisticated interactions between the heat transfer area changing pattern due to flame propagation and transfer duration might cause very peculiar heat release patterns.

GE 7FA+e DLN-2.6 Gas Turbine Combustor : Part Ⅰ Operating Condition Optimization (GE 7FA+e DLN-2.6 가스터빈 연소기 연구 : Part Ⅰ 운전조건 최적화)

  • Oh, Jeong-Seog;Kim, Min-Ki;Heo, Pil-Won;Lee, Jang-Soo;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.43-50
    • /
    • 2008
  • DLN-2.6 combustion tuning was carried out for the maintenance of GE 7FA+e gas turbine at Seo-Incheon combined cycle power plant. DLN-2.6 combustion system has the higher level of yellow plume and combustion vibration problem in the initial operating mode than that of the base mode($100{\sim}160MW$). The objectives of this study are to investigate the causes of yellow plume and combustion vibration problems at the starting mode and to suggest the best operating condition for the reliable working of the real combustors. By the analysis of tuning data, we could conclude that a yellow plume is caused by the rich mixture(${\phi}{\sim}1$) in a PM 1 nozzle at mode 3($20{\sim}30MW$). In addition, the combustion vibration($120{\sim}140Hz$) might be related to the cold flow characteristics of PM 3 nozzles at mode 6B($40{\sim}45MW$).

Sensitivity Analysis of Depletion Parameters for Heat Load Evaluation of PWR Spent Fuel Storage Pool (경수로 사용후핵연료 저장조 열부하 평가를 위한 연소조건 인자 민감도 분석)

  • Kim, In-Young;Lee, Un-Chul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.4
    • /
    • pp.237-245
    • /
    • 2011
  • As necessity of safety re-evaluation for spent fuel storage facility has emphasized after the Fukushima accident, accuracy improvement of heat load evaluation has become more important to acquire reliable thermal-hydraulic evaluation results. As groundwork, parametric and sensitivity analyses of various storage conditions for Kori Unit 4 spent fuel storage pool and spent fuel depletion parameters such as axial burnup effect, operation history, and specific heat are conducted using ORIGEN2 code. According to heat load evaluation and parametric sensitivity analyses, decay heat of last discharged fuel comprises maximum 80.42% of total heat load of storage facility and there is a negative correlation between effect of depletion parameters and cooling period. It is determined that specific heat is most influential parameter and operation history is secondly influential parameter. And decay heat of just discharged fuel is varied from 0.34 to 1.66 times of average value and decay heat of 1 year cooled fuel is varied from 0.55 to 1.37 times of average value in accordance with change of specific power. Namely depletion parameters can cause large variation in decay heat calculation of short-term cooled fuel. Therefore application of real operation data instead of user selection value is needed to improve evaluation accuracy. It is expected that these results could be used to improve accuracy of heat load assessment and evaluate uncertainty of calculated heat load.

Experimental Study on the Soot Formation Behavior of Octane Single Fuel Droplet Under the Constant Volume Combustion Conditions (정적 연소 조건에서 Octane 단일 연료 액적의 매연 생성 거동에 관한 연구)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.389-395
    • /
    • 2017
  • This study was performed to provide the information of the soot formation behavior of octane single fuel droplet under the identical combustion conditions. To achieve this, this experimental study provide the results of the soot formation characteristics of octane droplet in accordance with different initial droplet diameter($d_0$), at the same time, experiment was conducted under the same combustion conditions which are 1.0atm of ambient pressure($P_{amb}$), 21% of oxygen concentration($O_2$) and 79% of nitrogen concentration($N_2$). Visualization of octane droplet combustion was performed by visualization system with high speed camera. The results of maximum soot volume fraction($f_{vmax}$) was almost the same under the equivalent ambient conditions regardless of initial droplet diameter. Furthermore, maximum soot volume fraction was showed the higher value in the measuring direction between $135^{\circ}$ and $315^{\circ}$ since the soot-tail is generated during two opposing igniters movement process.

Conceptual Design of 50 kW thermal Chemical-Looping Combustor and Analysis of Variables (열량기준 50kW급 매체순환식 가스연소기의 개념설계 및 변수해석)

  • 류호정;진경태
    • Journal of Energy Engineering
    • /
    • v.12 no.4
    • /
    • pp.289-301
    • /
    • 2003
  • To develop a chemical-looping combustion technology, conceptual design of 50 kW thermal chemical-looping combustor, which is composed of two interconnected pressurized circulating fluidized beds, was performed by means of mass and energy balance calculations. A riser type fast fluidized bed was selected as an oxidizer and a bubbling fluidized bed was selected as a reducer by mass balance for the chemical-looping combustor. Calculated values of bed mass, solid circulation flux, and reactor dimension by mass and energy balance calculations were suitable for construction and operation of chemical-looping combustor. It is concluded from the comparison of the design results and operating values of commercial circulating fluidized bed that the process outline is realistic. Moreover, the previous results support that oxygen carrier particle, NiO/bentonite, fulfills the conversion rates needed for the proposed design. The effects of system capacity, metal oxide content in a oxygen carrier particle, amount of steam input, gas velocity, and solid depth on design values were investigated and the changes in the system performance can be estimated by proposed design tool.

Study of spatial temperature distribution during combustion process in a high temperature and pressure constant volume chamber (고온 고압 정적 연소실에서 연소과정에 따른 온도 분포 측정)

  • Kim, Ki-hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.345-350
    • /
    • 2017
  • Downsizing is widely applied to diesel engines in order to improve fuel efficiency and reduce exhaust emissions. Engine sizes are becoming smaller but pressure and temperature inside combustion chambers are increasing. Therefore, research for fuel spray under high pressure and temperature conditions is important. A constant volume chamber which simulates high temperature and pressure likely to be found in diesel engines was developed in this study. Pressure and temperature were increased abruptly because of ignition of the pre-mixture in the constant volume chamber. Then pressure and temperature were gradually decreased due to the heat loss through the chamber wall. Fuel spray occurred when temperature and pressure were reached at the target condition. In this experiment, the temperature condition should be exactly defined to understand the relation between fuel evaporation and ambient temperature. A fast response thermocouple was developed and used to measure the temporal and spatial temperature distribution during the combustion process inside the combustion chamber. In the results, the core temperature was slightly higher than the bulk temperature calculated by the gas equation. Ed-note: do you want to say 'ideal gas equation'? This was attributed to the heat transfer loss through the chamber wall. The vertical temperature deviation was higher than the horizontal temperature deviation by 5% which resulted from the buoyancy effect.

Effect of Injection Pressure and Injection Timing on Combustion Characteristics of Spray-Guided Direct-Injection Spark-Ignition Engine under Lean Stratified Combustion Operation (성층희박연소 운전조건에서 분사압과 분사시기에 따른 분무유도식 직접분사 가솔린엔진의 연소특성)

  • Oh, Hee-Chang;Lee, Min-Seok;Park, Jung-Seo;Bae, Choong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.981-987
    • /
    • 2011
  • In this study, single cylinder engine experiment was carried out to investigate combustion characteristics spray guided direct injection spark ignition engine. In the result of engine experiment, it was shown that flammable window of injection timing was existed. The combustion efficiency increased with retarding injection timing, reaching a peak value, subsequent to decrease again. These results were likely due to the effect of ambient pressure on stratified-premixed mixture preparation. 150 bar injection pressure condition and retarded injection timing from the best combustion efficiency injection timing showed the highest IMEP value due to the advanced combustion phase of the maximum combustion efficiency condition. HC emission showed same trend of combustion efficiency, and smoke emission was increased as injection timing was retarded due to the increased locally rich area in the high ambient pressure. NOx emission showed decreasing trend as injection timing was retarded. This is likely due to the maximum in-cylinder temperature was decreased with retarded combustion phase.