• Title/Summary/Keyword: 연소 가스

Search Result 2,399, Processing Time 0.027 seconds

An experimental study of particle deposition from high temperature gas-particle flows (고온의 기체 입자 유동으로부터 입자부착 현상에 관한 실험적 연구)

  • 김상수;김용진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.501-508
    • /
    • 1987
  • Experimental studies of particle (TiO$\_$2/) deposition from the laminar hot gas particle flow (about 1565K) onto the cold wall surface (about 1215K-1530K) were carried out by the 'real time' laser light reflectivity method (LLRM) and the photographs of scanning electron microscope(SEM). The LLRM was used for the measurement of thermophoretic deposition rates of small particles (d$\_$p/<3.mu.m), and the photographs of SEM were used for determining what factors control the collection of particles having diameters ranging from 0.2 to 30 microns. Two phenomena are primarily responsible for transport of the particles across the laminar boundary layers and deposition: (1) particle thermophoresis (i.e. particles migration down a temperature gradient), and (2) particle inertial impaction, the former effect being especially larger factor of the particle deposition in its size over the range of 0.2 to 1 microns. And also, this study indicates that thermophoresis can be important for particles as large as 15 microns. Beyond d$\_$p/=16.mu.m, this effect diminishes and the inertial impaction is taken into account as a dominant mechanism of particle deposition. The results of present experiments found to be in close agreement with existing theories.

Applicability of Climate Change Impact Assessment Models to Korean Forest (산림에 대한 기후변화 영향평가 모형의 국내 적용성 분석)

  • Kim, Su-na;Lee, Woo-Kyun;Son, Yowhan;Cho, Yongsung;Lee, Mi-Sun
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.1
    • /
    • pp.33-48
    • /
    • 2009
  • Forests store carbon dioxide ($CO_2$), one of the major factors of global warming, in vegetation and soils through photosynthesis process. In addition, woods deposit $CO_2$ for a long term until the harvested wood is decomposed or burned, and deforested areas could be expanded the carbon sinks through reforestation. Forests are a lso able to decrease temperature through transpiration and contribute to control the micro climate in global climate systems. Consequently, forests are considered as one of major sinks of greenhouse gases for mitigating global warming. It is very important to develop a Korea specific forest carbon flux model for preparing adaptation measures to climate change. In this study, we compared the climate change impact models in forests developed in foreign countries and analyzed the applicability of the models to Korean forest. Also we selected models applicable to Korean forest and suggested approaches for developing Korean specific model.

A Study on the Dynamic Charateristics for Control of Gas-Fueled industrial Gas Boiler(I) (산業용 GAS 보일러의 動特性에 관한 硏究 (I))

  • 임종한;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.965-973
    • /
    • 1992
  • Boilers, which are considered to be one of the basic equipment in industry, consume large potion of nation's petroleum and their demand is growing everyday. In recent, the technology improvement in production of high efficiency boilers and their effective utilization is needed for design of boiler which steam condition is the large capacity of high temperature and high pressure. It is necessary that boiler control system be studied for high efficiency, high reliability and smooth operation. The control of drum pressure and water level particularly becomes an important task for greater accuracy with the avail ability of boiler operation. To achieve this aim, dynamic analysis of a boiler is accomplished by choosing a boiler as a model. Transfer function thus obtained is made a comparison of measurement with reckoning to technical design data. The results of comparison makes it possible to verify thermodynamical analysis on the dynamic behavior of the overall system.

A Study on the Regeneration of SCR Catalyst Deactivated by Unburned Carbon Deposition (탄소침적으로 피독된 탈질 촉매의 재생에 관한 연구)

  • Moon, Seung-Hyun;Lee, Seung-Jae;Ryu, In-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.928-935
    • /
    • 2010
  • A bag filter system was partially burnt down during a trial run of waste wood incineration boiler. This brought about unburned hydrocarbon which caused a rapid deactivation of low temperature SCR catalyst set up in two stage after the bag filter. The deactivated catalyst was investigated in order to trace the origin by several characterization methods such as XRD, EDX, BET, TGA, SEM. The deactivated catalyst was regenerated by different methods such as acid washing, water washing in ultrasonication, and calcination treatment under air condition. It is found the calcination treatment under air condition at $450^{\circ}C$ for 2 hours to be the best regeneration method. The catalytic activity was measured in the form of 2 cm ${\times}$ 2 cm ${\times}$ 10 cm (catalyst weight 10 g) honeycomb type. A deNOx efficiency of the regenerated catalyst showed 100% at $180^{\circ}C$ which is the same level of fresh one.

The Effects of Engine Speed and Load of the Partial Premixed Diesel Compressed Ignition Engine Applied with the Split Injection Method on Exhaust Gas and IMEP Characteristics (2단 분사방식을 적용한 부분 예혼합 디젤 압축착화 연소 엔진의 회전속도 및 부하 변화가 배출 가스 및 IMEP특성에 미치는 영향)

  • Kang, Jeong-Ho;Lee, Sung-Man;Chung, Jae-Woo;Kang, Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.162-170
    • /
    • 2007
  • Currently, due to the serious world-wide air pollution by substances emitted from vehicles, emission control is enforced more firmly and it is expected that the regulation requirements for emission will become more severe. Anew concept combustion technology that can reduce the NOx and PM in relation to combustion is urgently required. Due to such social requirement, technologically advanced countries are making efforts to develop an environment-friendly vehicle engine at the nation-wide level in order to respond to the reinforced emission control. As a core combustion technology among new combustion technologies for the next generation engine, the homogeneous charge compression ignition (HCCI) is expanding its application range by adopting multiple combustion mode, catalyst, direct fuel injection and partially premixed combustion. This study used a 2-staged injection method in order to apply the HCCI combustion method without significantly altering engine specifications in the aspect of multiple combustion mode and practicality by referring to the results of studies on the HCCI engine. And it is investigated that the effects of the engine rpm and load(or A/F) to emission characteristics.

The Effect of Fuel Injection Timing on Combustion and Power Characteristics in a DI CNG Engine (직분식 CNG 엔진에서 연료 분사시기의 변화가 연소 및 출력 특성에 미치는 영향)

  • Kang, Jeong-Ho;Yoon, Soo-Han;Lee, Joong-Soon;Park, Jong-Sang;Ha, Jong-Yul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.193-200
    • /
    • 2007
  • Natural gas is one of the most promising alternatives to gasoline and diesel fuels because of its lower harmful emissions, including $CO_2$, and high thermal efficiency. In particular, natural gas is seen as an alternative fuel for heavy-duty Diesel Engines because of the lower resulting emissions of PM, $CO_2$ and $NO_x$. Almost all CNG vehicles use the PFI-type Engine. However, PFI-type CNG Engines have a lower brake horse power, because of reduced volumetric efficiency and lower burning speed. This is a result of gaseous charge and the time losses increase as compared with the DI-type. This study was conducted to investigate the effect of injection conditions (early injection mode, late injection mode) on the combustion phenomena and performances in the or CNG Engine. A DI Diesel Engine with the same specifications used in a previous study was modified to a DI CNG Engine, and injection pressure was constantly kept at 60bar by a two-stage pressure-reducing type regulator. In this study, excess air ratios were varied from 1.0 to the lean limit, at the load conditions 50% throttle open rate and 1700rpm. The combustion characteristics of the or CNG Engine - such as in-cylinder pressure, indicated thermal efficiency, cycle-by-cycle variation, combustion duration and emissions - were investigated. Through this method, it was possible to verify that the combustion duration, the lean limit and the emissions were improved by control of injection timing and the stratified mixture conditions. And combustion duration is affected by not only excess air ratio, injection timing and position of piston but gas flow condition.

Analysis of Sine Test Results with Prediction for Geo-stationary Satellite (정지궤도 위성의 정현파 가진 시험과 예측 비교)

  • Kim, Chang-Ho;Kim, Kyung-Won;Kim, Sun-Won;Lim, Jae-Hyuk;Hwang, Do-Soon
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.80-84
    • /
    • 2010
  • Satellite structure should be designed to accommodate and support safely the payload and equipments necessary for its own missions and to secure satellite and payloads from severe laucnch enviroments. The lauch environments imposed on satellites are quasi-static accelerations, aerodynamic loads, acoustic loads and shock loads. To qualify the structure design against low-frequency dyanmic enviromnent, sine vibration test should be performed. During sine vibration test, the notchings are implemented in order to keep the payloads and equipments from excessive loading at their own main modes. This paper deals with sine test prediction, sine vibration test results, comparison of predicted values and tested values, and verification of Finite Element Model.

Evaluation of ZSM-5 supported metal catalyst for NOx removal (NOx 제거를 위한 금속 담지 ZSM-5 촉매 평가)

  • Kim, Jin-Gul;Yoo, Seung-Joon;Kim, Seong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.2015-2020
    • /
    • 2009
  • $NO_x$ reduction of stationary exhaust was performed at atmospheric condition and the temperature ranging from $200^{\circ}C$ to $500^{\circ}C$ over ZSM-5 supported metal catalyst. The characteristics of the prepared catalysts were investigated using the analytical techniques such as SEM, XRD, EDX, ICP and ITR. The results of EDX and ICP analysis demonstrated that the most part of transition metal existed on the exterior surface of support. Maximum de-$NO_x$ yield over Fe/ZSM-5 shown between $380^{\circ}C$ and $400^{\circ}C$ was presumed to be due to the maximum H2 reduction rate at $400^{\circ}C$ of ITR.

Reduced-Scale Experiments of the Partial Smoke Extraction System in Tunnel Fires (풀화재를 이용한 터널화재 부분배연 모델실험)

  • Lee, Eui-Ju;Yoo, Yong-Ho
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.58-64
    • /
    • 2006
  • Smoke extraction in tunnel fire is investigated experimently with thermal model. The object is a immersed tunnel, of which the partial extraction system exists between the tubes. The model tunnel is measured 12 m long, 0.5 m wide and 0.35 m high. The fire is simulated to pool fire and the size corresponds to full scale fire of 5 MW based on Froude modeling. The performance of partial extraction system is determined under two ventilations, natural and longitudinal ones. The results show that compared with longitudinal ventilation, the smoke extraction efficiency of natural ventilation is increased about 30% because of smoke stratification in tunnel. Also the efficiency is identical to the iso-thermal model. The results will be help for activation of the ventilation system in emergency such as in the event of tunnel fires.

Preliminary Design of a High Altitude Test Facility using a Secondary Throat Exhaust Diffuser and an Ejector (이차목 디퓨저와 이젝터를 사용한 고공환경모사장치 예비설계)

  • Kim, Joong-Il;Jeon, Jun-Su;Kim, Tae-Wan;Ko, Young-Sung;Kim, Sun-Jin;Kim, Yoo;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.475-478
    • /
    • 2012
  • In this study, preliminary design of a high-altitude test facility (HATF) was performed to simulate the high-altitude environment using a rocket engine that liquid oxygen and kerosene were used as the propellant. Experimental facility consists of vacuum chamber, supersonic exhaust diffuser, heat exchanger, ejector and gas generator. The vacuum chamber was simulated and maintained high-altitude environmental pressure by supersonic exhaust diffuser. Combustion gas of the rocket engine was cooled by water at heat exchanger after that the mixed gas was emitted to the air by ejector. The ejector which was operated by the steam generator using 75% ethanol and liquid oxygen as propellants and water for steam maintains a vacuum condition.

  • PDF