Applicability of Climate Change Impact Assessment Models to Korean Forest

산림에 대한 기후변화 영향평가 모형의 국내 적용성 분석

  • Kim, Su-na (Department Environmental Science and Ecological Engineering, Korea University) ;
  • Lee, Woo-Kyun (Department Environmental Science and Ecological Engineering, Korea University) ;
  • Son, Yowhan (Department Environmental Science and Ecological Engineering, Korea University) ;
  • Cho, Yongsung (Department Food and Resource Economics, Korea University) ;
  • Lee, Mi-Sun (Department Environmental Science and Ecological Engineering, Korea University)
  • 김순아 (고려대학교 환경생태공학과) ;
  • 이우균 (고려대학교 환경생태공학과) ;
  • 손요환 (고려대학교 환경생태공학과) ;
  • 조용성 (고려대학교 식품자원경제학과) ;
  • 이미선 (고려대학교 환경생태공학과)
  • Received : 2008.12.08
  • Accepted : 2009.03.11
  • Published : 2009.03.31

Abstract

Forests store carbon dioxide ($CO_2$), one of the major factors of global warming, in vegetation and soils through photosynthesis process. In addition, woods deposit $CO_2$ for a long term until the harvested wood is decomposed or burned, and deforested areas could be expanded the carbon sinks through reforestation. Forests are a lso able to decrease temperature through transpiration and contribute to control the micro climate in global climate systems. Consequently, forests are considered as one of major sinks of greenhouse gases for mitigating global warming. It is very important to develop a Korea specific forest carbon flux model for preparing adaptation measures to climate change. In this study, we compared the climate change impact models in forests developed in foreign countries and analyzed the applicability of the models to Korean forest. Also we selected models applicable to Korean forest and suggested approaches for developing Korean specific model.

산림은 지구온난화의 주범이라 할 수 있는 이산화탄소를 광합성 작용을 통해 식생과 토양 등에 저장 할 수 있다. 또한, 산림에서 벌채된 나무는 부패되거나 연소되지 않는 한 장기적으로 이산화탄소를 저장할 수 있으며 벌채된 지역에서는 재조림을 통해 탄소흡수원을 확충할 수 있다. 산림은 증산작용을 통해 기온을 낮추는 등 미세기후 조절 역할로 지구기후시스템에 기여하고 있다. 이와 같은 이유로 지구 온난화를 줄이기 위해서 대기중에 방출된 온실가스의 흡수원으로서 산림이 필수적인 것으로 평가되어져 왔다. 이러한 측면에서 기후변화에 대한 지구 탄소 순환적응 프로그램을 확충하고 한국형 산림 모델로 발전 시키는 것은 매우 중요하다. 본 연구에서는 국외에서 개발한 여러 종류의 산림 부문 기후변화 영향 평가 모형을 비교 분석하여 우리나라 산림 생태 모형으로 적용할 수 있는지를 검토하였다. 또한, 모형별 입력 자료 확보 가능성을 기초로 구동 가능 모형을 선정하여 문제점을 파악한 후 대안을 도출하였다.

Keywords

Acknowledgement

Supported by : 국토해양부

References

  1. 곽한빈, 이우균, 이시영, 원명수, 이명보, 구교상. 2008. 산불 발생 분포와 지형, 지리, 기상 인자간의 관계 분석. 한국지형공간정보학회. 춘계학술대회 465-470
  2. 기상연구소. 1999. 대기조성변화에 따른 지역기후변화 연구. 기상연구소 연구보고서. pp. 1-10
  3. 박용하, 전성우, 최재용, 정휘철, 김정원. 2000. 기후변화에 따른 생태계 영향 평가 및 대응방안. 산림생태계 부문을 중심으로. 한국환경정책평가연구원. pp. 36-43
  4. 산림청. 2007. 기후변화와 산림. 리플렛 자료. http://carbon.kfri.go.kr (2007. 9. 10)
  5. 서정호, 이정학, 손영모, 임종환, 배재수, 유동헌, 노종환. 2006. 지구온난화와 산림 그리고 탄소나무 계산기. 국립산림과학원. pp. 2-10
  6. 한화진, 안소은 외. 2006. 기후변화 영향평가 및 적응시스템 구축. 한국환경정책평가연구원. pp. 22-23
  7. 한화진 외. 2007. 기후변화 영향평가 및 적응시스템 구축. 한국환경정책평가연구원. pp. 1-2
  8. 한국과학기술정보원. 2005. 기후 및 기후변화 예측 및 영향평가 기술. 기술문서. Tech-Issue: 9-10. pp. 3-4
  9. Alcamo, J., Leemans, R. and Kreileman, E. 1998. Global Change Scenarios of the 21st Century, Results from the IMAGE 2.1 Model. Pergamon London. UK. pp. 296
  10. AIM Project Team. 1997. Asian-Pacific Integrated Model. NIER. Japan
  11. Antoine, J., Fisher, G. and Makowski, M. 1997. Multiple Criteria Land Use Analysis. North Holand. Applied on agricultural fields in vermont. Water Resource. 87: 141
  12. Bachelet, D., Lenihan, J.M., Daly, C., Neilson, R.P., Ojima, D.S. and Parton, W.J. 2001. MC1: A dynamic vegetation model for estimating the distribution of vegetation and associated ecosystem fluxes of carbon, nutrients, and water. USDA Forest Service. General Technical Report. PNW-GTR-508. pp. 2-36
  13. Beaumont, J.L., Lesley, H. and Michael, P. 2005. Pridicting species distributions: use of climatic paremeters in BIOCLIM and its impact on predictions of species current and future distribution, Ecological Modelling. 186:250-269 https://doi.org/10.1016/j.ecolmodel.2005.01.030
  14. Box, M.A., Box, G.P. and Deepak, A. 1979. Special techniques for remote sensing of physical characteristics of submicron atmospheric aerosols. The Annual Conference of the GAF. pp. 210-211
  15. Cao. M. and Prince S.D. 2002. Increasing terrestrial carbon uptake from the 1980s to the 1990s with changes in climate and atmospheric $CO_2$. Global Biogeochemical cycles. 16(4): 1069 https://doi.org/10.1029/2001GB001553
  16. Cao, M., Prince, S.D., Tao, B., Small, J. and Li, K. 2005. Regional Pattern and Interannual Variations in Global Terrestrial Carbon Uptake in Response to Changes in Climate and Atmospheric $CO_2$. Tellus. 57(3): 210-217 https://doi.org/10.1111/j.1600-0889.2005.00146.x
  17. Cao, M., Woodward, F.I. 1998(a). Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature. 393(21): 249-252
  18. Cao, M. and Woodward. F.I. 1998(b). Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Global Change Biology. 4(2): 185-198 https://doi.org/10.1046/j.1365-2486.1998.00125.x
  19. Cao, M.K., Prince, S.D., Tao, B., Small, J. and Shao, X. 2003. Response of Terrestrial Carbon Uptake to Climate Interannual Variability in China. Global Change Biology, 9: 536-546 https://doi.org/10.1046/j.1365-2486.2003.00617.x
  20. Catherine, A.J. and Clausen J.C. 1989. Tests of the CREAMS model on agricultural fields in vermont. American Water Resource Association. 24: 1219-1226 https://doi.org/10.1111/j.1752-1688.1988.tb03041.x
  21. Constable, J.V.H. and Friend A.L. 2000. Suitability of process-based tree growth models for addressing tree responses to climate change, Environmental Pollution. 110:47-59 https://doi.org/10.1016/S0269-7491(99)00289-4
  22. Choi, S.H. 2008. IUFRO: International Union of Forest Research Organizations Conference. Kangwon National University. Korea Forest Research Institute. October 13th-17th: 71-75
  23. Daly, C., Roland, P.N. and Donald L. Phillips. 1994. A spatistical-Topo graphic Model for Mapping Climatological Precipitation over Mountainous Terrain. Applied Meteorology. 33: 140-158 https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2
  24. Field, C. B., Randerson, J.T. and Malmstrom, C.M. 1995. Global Net Primary Production: Combining Ecology and Remote Sensing, Remote sensing Environment. 51: 74-88 https://doi.org/10.1016/0034-4257(94)00066-V
  25. Foley, J.A., Prentice, N., Ramunkutty, S., Levis, D., Pollard, S.S. and Hexeltine, A. 1996. An integrated biosphere model of land surface processes, Terrestrial carbon balance and vegetation dynamics. Global Biogeochemical Cycle. 10: 603-628 https://doi.org/10.1029/96GB02692
  26. Gassman, P.W., Reyes, M.R., Green, C.H. and Arnold, J.G. 2007. The soil and water assessment tool: Historical development, applications and future research directions. American Society of Agricultural and Biological Engineers. 50(4): 1211-1250
  27. GCP. 2004. Conference. Sectorial Budgets: Methods, Quantities, Issues Agriculture, University of Aberdeen. UK. http://www.globalcarbonproject.org/(2004. 11. 15-18)
  28. Haxeltine, A. and Prentice C.I. 1996. BIOME3: An Equilibrium Terrestrial Biosphere Model Based on Eco physiological Constraints, Resource Availability, and Competition among Plant Functional Type. Global Biogeochemical Cycle. 10(4): 693-709 https://doi.org/10.1029/96GB02344
  29. Holdridge, L. 1967. Holdridge life Zones, Life zone ecology. Tropical Science Center, San jose, Costa Rica
  30. IPCC. 2007. Climate change: Physical science Basis. Paris, France. pp. 2-21
  31. Ito, A. and Oikawa, T. 2002. A simulation model of the carbon cycle in land ecosystems (SIM-CYCLE): a description based on dry-matter production theory and plot-scale validation. Ecological Modellinng. 151: 143-176 https://doi.org/10.1016/S0304-3800(01)00473-2
  32. Jung, H.C., Jeon, S.W, Lee, D.K. and Matsuoka, Y. 2003. Evaluation of Vegetation Adaptability to Climate Change on the Korean Peninsula using Forest Moving Velocity, Korea Environment Institute. 12(5): 383-393
  33. Kim, J.U. and Lee, D.K. 2006. Vulnerability Assessment of forest Vegetations by climate change in Korea, The Korea Society for Environmental Restoration and Revegation Technology, 9(5): 32-40
  34. Kim, M.K. 2005. The Applicability of the statistical downscaling method for climate change scenario in Korea, Korean Meteorogical Society. 21(2-1): 217-227
  35. Lee, D.K., Kim, J.U. and Jung, H.C. 2006. A comparative Study on General Circulation Model and Regional Climate Model for Impact Assessment of Climate Changes. Korea Environmental Impact Assessment. 15(4): 249-258
  36. Lee, M.A. 2008. A study on the vulnerability of forest ecosystems to climate change in Korea. Graguate school Korea University. Dissertation. Master
  37. Lim, J.H. 1998. A forest dynamics model based on topographically-induced heterogeniety in solar radiation and soil moisture on the Kwangneung Experimental Forest. Graguate school Seoul National University. Dissertation. Doctor of Philosophy
  38. Moore, I.D., Grayson, R.B. and Ladson A.R. 1990. Digital terrain modelling: A review of hydrological, geomor geomorphological, and biological applications. Hydrological Processes. Issue1. 5: 3-30 https://doi.org/10.1002/hyp.3360050103
  39. Muraoka, H. and Koizumi, H. 2008. Satellite Ecology (SATECO)-linking ecology, remote sensing and micrometeorology, from plot to regional scale, for the study of ecosystem structure and function. Plant Res. Ecological Society of America. DOI 10.1007/s10265-008-0188-2. 74(3): 792-797
  40. NASA. 2007. The carbon Cycle. A brief description from NASA-Earth Observatory. http://earthobservatory.nasa.gov/Library/CarbonCycle/ (2007. 11. 13)
  41. Neilson, P.R. 1995. A model for predicting continentalscale vegetation distribution and water balance. Ecological Modelling. 42: 125-154 https://doi.org/10.1016/0304-3800(88)90112-3
  42. Olson, J.S., Watts, J.A. and Allison, L.J. 1983. Carbon in live vegetation of major world ecosystems. ORNL-5862. Oak Ridge National Laboratory. Oak Ridge
  43. Osborne, C.P., Mitchell, P.L., Sheehy, J.E. and Woodward, F.I. 2000. Modelling the recent historical impacts of atmospheric $CO_2$ and climate change on Mediterranean vegetation, Global change Biology. 6: 445-458 https://doi.org/10.1046/j.1365-2486.2000.00336.x
  44. Parton, W.J., Schimel, D.S., Cole, C.V. and Ojima, D.S. 1987. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil science society of America. 51: 1173-1179 https://doi.org/10.2136/sssaj1987.03615995005100050015x
  45. Paster, J. and Post, W.M. 1986. Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochemistry. 2: 3-27 https://doi.org/10.1007/BF02186962
  46. Potter, C. and Steven, A.K. 1997. Global model estimates of carbon and nitrogen storage in litter and soil pools: response to changes in vegetation quality and biomass allocation. Tellus. 49B: 1-17
  47. Running, S.W. and Coughlan, J.C. 1998. A General Model of Forest Ecosystem Processes for regional application. Hydrologic Balance, Canopy gas exchange and primary production processes. Ecological plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology. 9: 161-185 https://doi.org/10.1046/j.1365-2486.2003.00569.x
  48. Running, S.W. and Hunt, R.E. 1993, Generalization of a Forest Ecosystem Process Model for Other Biomes, BIOME-BGC, and an Application for Global-Scale Models. In: Ehleringer, J.R., Field, C.B.(Eds.), Scaling Physiologic Processes: Leaf to Globe. Academic Press. Inc. New York. pp. 141-158
  49. Sasai, T., Kazuhito, I., Yasushi, Y. and Ramakrishna, N. 2005. Simulating terrestrial carbon fluxes using the new 'Biosphere model integrating Eco-physiological And Mechanistic approaches using Satellite data'(BEAMS). Geophysical Research. DOI:10.1029/2005JG000045. 11:G02014
  50. Sasai, T., Okamoto, K., Hiyama, T. and Yamaguchi, Y. 2007. Comparing terrestrial carbon fluxes from the scale of a flux tower to the global scale. Ecological Modelling. 208: 135-144 https://doi.org/10.1016/j.ecolmodel.2007.05.014
  51. Samuel, P.E., Marco, T. 1995. A soil water-balance ‘bucket’ model for paleoclimatic purposes, 1. Model structure and validation. Ecological Modelling. 82: 109-129 https://doi.org/10.1016/0304-3800(94)00084-U
  52. Sellers, P.J. and Dorman, J.L. 1987. Testing the Simple Biosphere Model(SIB) using point micrometeorological and biophysical data. Climate and Applied meteorology. 26: 622-651 https://doi.org/10.1175/1520-0450(1987)026<0622:TTSBMU>2.0.CO;2
  53. Sharma, K.D., Surendra, S. 1995. Satellite remote sensing for soil erosion modelling using the ANSWER model. Hydrological Sciences. 40(2): 259-272 https://doi.org/10.1080/02626669509491408
  54. Shugart, H.H., West, D.C., Running, S.W. 1993. A physiology Based Gap Model of Forest dynamics. Ecological society of America. Ecology. 74(3): 792-797 https://doi.org/10.2307/1940806
  55. Schimel, D., Alves, D., Enting, I., Heimann, M., Joos, F., Raynaud, D., Wigley, T., Prather, M., Derwent, R., Ehhalt, D., Fraser, P., Sanhueza, E., Zhou, X., Jonas, P., Charlson, R., Rodhe, H., Sadasivan, S., Shine, K.P., Fouquart, Y., Ramaswamy, V., Solomon, S., Srinivasan, J., Albritton, D., Isaksen, I., Lal, M. and Wuebbles, D. 1995. Radiative Forcing of Climate Change. In Climate Change 1995-The Science of Climate Change, IPCC, Cambridge University Press, Cambridge, pp. 65-131
  56. Smith, P. 2004. Sectorial Budgets: Methods Quantities, Issues-Agriculture, Regional Carbon Budgets: From methodologies to quantification. Beijing China. 15-18th. November
  57. Stich, S., Smith, B., Prentice, I. C., Arneth A., Bondeau, A., Cramer, W., Kaplan, J.O., Levis, S., Lucht, W., Sykes M.T., Thonicke, K., and Venevsky S. 2003. Evaluation of ecosystem dynamics, global vegetation model. Global change Biology. 9: 161-185 https://doi.org/10.1046/j.1365-2486.2003.00569.x
  58. Thronthwaite, C.W. and Mather J.R. 1995. The water balance, Publications in Climatology. 8: 1-86
  59. UNFCCC. Secretariat. 2005. Compendium on Methods and Tools to Evaluate Impacts of and Vulnerability and Adaptation to Climate Change. Stratus Consulting Inc. pp. 143-155
  60. UNEP. 1998. Handbook on Methods for Climate Change Impact Assessment and Adaptation Strategies. Version 2.0. Vrije Unversiteit Amsterdam. United Nations Environment Programs. pp. 70-464
  61. US Global Change Research Program. 2003. Images from our changing Planet FY 2003. Washington DC. http://www.usgcrp.gov/usgcrp/images/ocp2003/ocpfy2003-fig5-1.htm (2003.10.12)
  62. Wang, Y.P., Javis, P.G. 1990. Description and validation of an array model-MAESTRO. Agricultural and Forest Meteorology. 51: 257-280 https://doi.org/10.1016/0168-1923(90)90112-J
  63. Watanabe, T., Yokozawa, M., Emori, S., Takata, K., Sumida, A. and Hara, T. 2004. Developing a multilayered integrated numerical model of surface physics-growing plants interaction (MINoSGI). Global Change Biology. 10: 963-982 https://doi.org/10.1111/j.1529-8817.2003.00768.x
  64. Williams, J.R., Dyke, P.T. and Jones, C.A. 1983. EPIC-A model for assessing the effects of erosin on soil productivity. Analysis of Ecological Sytem: State-of the art in ecological modeling, develpments in Environmental Modelling 5. Elsevier Scientific Publishing Company. Amsterdam Oxford-New York. pp. 553-572
  65. Wikipedia. http://en.wikipedia.org/wiki/Global_climate_model (2008.12.10)