• 제목/요약/키워드: 연소 가스

Search Result 2,399, Processing Time 0.029 seconds

An experimental study for preliminary design of gas turbine combustor (가스터빈 연소기 기본형상 결정을 위한 성능실험)

  • An, Guk-Yeong;Kim, Han-Seok;Jo, Eun-Seong;Bae, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.840-848
    • /
    • 1998
  • The preliminary design and performance test were carried out for determining dimensions of gas turbine combustor. The combustor design program was developed and applied to design our combustor, and the specific dimensions for swirler, dome and liner holes were determined by the semiempirical manner. Based on the first performance test data, the swirl angle governing the combustion characteristics of primary combustor zone was determined as 40 deg.. Using the second performance test data, the swirler dimensions were readjusted by 24 mm i.d., 34 mm o.d., and swirl angle of 45 deg.. The geometry of liner holes were determined by considering the flame stability and recirculation zone size. It was found that flame can be more easily stabilized by adjusting the swirler dimensions rather than liner holes. The geometry of swirler and liner holes were readjusted by using the final performance test data with dilution holes. Also, the combustor performance and emission characteristics were evaluated by analysis of exhaust gases.

A Study on the Characteristics of Mixture Formation and Combustion in HCCI Engine according to the Various Injection Angles and Timings (분사시기 및 분사각 변화에 따른 HCCI 엔진의 혼합기 분포 및 연소특성에 관한 연구)

  • Kim, Hyung-Min;Ryu, Jea-Duk;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.20-25
    • /
    • 2006
  • Recently, there has been an interest in premixed diesel engines as it has the potential of achieving a more homogeneous and leaner mixture close to TDC compared to conventional diesel engines. Early studies are shown that in a HCCI(Homogeneous Charge Compression Ignition) engine, the fuel injection timing and injection angle affects the mixture formations. Thus the purpose of this study was to investigate relationship of combustion and mixture formations according to injection timing and injection angle in a common rail direct injection type HCCI engine using a early injection method called the PCCI(Premixed Charge Compression Ignition). From this study, we found that the fuel. injection timing and injection angle affect the mixture formations and in turn affects combustion in the PCCI engine.

A Study on the Calculation Formulae for the Required Air and Combustion Gas of the Domestic Anthracites (국산무연탄의 소유공기량과 발생연소가스량의 산식에 관한 연구)

  • 이우환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.28-33
    • /
    • 1981
  • The characteristics of typical 35 kinds of domestic anthracites among 155 kinds are studied to find the calculation formula for the required quantity of air and the combustion gas quantity. 1) The author's calculation formulae are as follows: ${A_0}={\frac{1, 000}{1, 064}}{H_1}+0.086(Nm^3/kg)$ ${G_0}={\frac{1, 000}{1, 110}}{H_1}+0.234(Nm^3/kg)$(1) Theoretically required quantity of air (2) Theoretical quantity of combustion gas 2) Theoretical quantity of air in combustion of domestic anthracite is always estimated more with Rosin's formula than author's one in the typical domestic anthracites which have the lower calorific value between 3, 000-8, 000 Kcal/kg and the difference of the calculated quantity of air becomes small, as the calorific value increases. 3) Theoretical quantity of combustion gas is estimated more by author's formula than by Rosin's one with the domestic anthracites which have more calorific value than 6, 700 Kcal/kg and is estimated less in the under range of the above calorific value. 4) Theoretical quantity of required air and quantity of combustion gas of domestic anthracite show ${\pm}$4% difference by Rosin's formulae in comparison with results of actual analysis, and about ${\pm}$1.5% by the author's one.

  • PDF

Numerical Analysis for Slag Deposition in the Kick Motor (킥모터 슬래그 적층에 대한 수치해석)

  • Jang, Je-Sun;Kim, Byung-Hun;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.131-143
    • /
    • 2008
  • Slag mass deposition was required to predict performance accurately of KSLV-I kick motor(KM) system. The validation of the numerical analysis was performed with mass flow rate measured at 4th ground test of the KM. The study described here included internal flow field of KM at various time steps during burning. Slag mass accumulation was computed through the aluminum oxide particle paths to deviate from the gas flow streamlines in flight. These numerical analysis was performed with Fluent 6.3 program The effects for the acceleration, origins and diameters of the aluminum oxide particles was analyzed, finally the total slag mass accumulation was acquired. We confirmed that the slag mass deposition was agreement well with predicted slag mass based on kick motor the grounded test.

  • PDF

Measurement of Transient Heat Transfer Coefficient of In-cylinder Gas in the Hydrogen Fueled Engine with Dual Injection System (이중분사식 수소기관 연소실내 가스의 순간열전달계수의 측정)

  • Wei, Shin-Whan;Kim, Yun-Young;Lee, Jong-Tai
    • Journal of Hydrogen and New Energy
    • /
    • v.12 no.4
    • /
    • pp.267-275
    • /
    • 2001
  • To clear the differences of heat transfer coefficient of in-cylinder gas with fuel properties, the transient heat transfer coefficient of hydrogen gas is investigated by using the hydrogen fueled engine. The measured results were also compared with those of gasoline engine and several empirical equations. Transient heat transfer coefficients were determined by measurements of unsteady heat flux and instantaneous wall temperature in the cylinder head. As the main results, it is shown that transient heat transfer coefficients have remarkable differences according to fuel properties, and it's value for hydrogen engine is twice higher than that of gasoline engine. It means that equation of heat transfer coefficient that the effect of fuel properties is considered sufficiently, is needed to analyze or simulate the gas engine performance.

  • PDF

A Study on the Injection Characteristics of Direct Injection CNG Fuel (직접분사 CNG 연료의 분사특성에 관한 연구)

  • Lee, S.W.;Rogers, T.;Petersen, P.;Kim, I.G.;Kang, H.I.
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.6
    • /
    • pp.643-647
    • /
    • 2014
  • Two types of fuel supply method ar used in CNG vehicles. One is premixed ignition and the other is gas-jet ignition. In premixed ignition, the fuel is introduced with intake air so that homogeneous air-fuel mixture may form. The ignitability of this method depends on the global equivalence ratio. In gas-jet ignition, CNG is introduced directly into the engine combustion chamber. The overall mixture is stratified by retarded fuel injection. In this study, a visualization technique was employed to obtain fundamental properties regarding overall mixture formation of direct injected CNG fuel inside a constant volume chamber. Jet angles, penetrations and projected jet area with respect to ambient pressure are investigated. The penetration decreases apparently and the time reaching the CVC wall was delayed as the chamber pressure increases. This is caused by the higher inertia of the fluid elements that the injected fluid must accelerate and push aside. It is same to liquid fuel such as diesel and gasoline, but this phenomenon is far more prominent for the gaseous fuel.

The Combustion Characteristics of Agricultural Diesel Engine using Biodiesel Fuel(Ester of Rice Bran Oil) (바이오디젤유(미강유 에스테르)를 이용한 농업용 디젤기관의 연소 특성)

  • Ryu, Kyung-Hyun;Yun, Yoong-Jin;Oh, Young-Taig
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.181-187
    • /
    • 2003
  • Biodiesel fuel as an alternative fuel for diesel engine has a great possibility to solve the problems such as air pollution. It is a domestically produced, renewable fuel that can be manufactured from vegetable oils, used vegetable oils, or animal fats. In this study, the usability of biodiesel fuel derived from rice bran oil as an alternative fuel for diesel engines was investigated in agricultural diesel engine. Emissions were characterized with neat biodiesel fuel and with a blend of biodiesel fuel and conventional diesel fuel. Since the biodiesel fuel includes oxygen of about 11%, it could influence the combustion process strongly. So, the use of biodiesel fuel resulted in lower emissions of carbon monoxide, carbon dioxide, and smoke emissions without any increase of oxides of nitrogen. It is concluded that biodiesel fuel can be utilized effectively as a renewable and an environmentally Innocuous fuel for diesel engine.

A study on theory analysis and CFD simulation for design of high efficiency ceramic exchanger (고효율 세라믹 열교환기 설계를 위한 이론해석 및 CFD시뮬레이션에 관한 연구)

  • Park, Kyung-Seo;Choi, Chong-Gun;Nam, Jin-Hyun;Shin, Doog-Hoon;Jung, Tae-Yong;Park, Sang-Hwan;Kim, Chang-Sam
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2008.04a
    • /
    • pp.179-186
    • /
    • 2008
  • 현재 대부분의 산업용 열기관은 효율을 높이기 위하여 연소에 사용되는 공기를 예열하는 방법을 사용한다. 하지만, 산업용 열기관에서 평균적으로 발생되는 $1000^{\circ}C$ 이상의 배기가스는 일반 금속 열교환기에는 적합하지 않다. 이에 반해 세라믹 열교환기의 경우 고온에서 견디는 장점이 있다. 본 연구에서는 기본적인 열교환기 설계 이론을 이용하여 설계프로그램을 제작하였다. 또한 세라믹 열교환기 내 열 유체 거동을 CFD 상용코드인 FlUENT 6.2를 이용한 전산해석을 수행하여 설계결과를 비교 검증하였다. 설계 결과에서 휜의 형태 변화에 따라 열전달율과 온도구배는 무시할 수 있을 정도로 작았으나, 압력강하는 크게 변동되는 결과가 도출되었다. 제한된 모듈 크기에서 휜 간거리는 휜의 두께에 비해 약 3배 이상 클 경우가 적당하며, 판(plate)의 두께는 작을수록 압력손실이 적고, 열전달율이 상승하지만 두께가 너무 얇게 된다면 제작상의 어려움이 생긴다. 향후 연구에서는 단순한 구조에서 벗어나 off-set이나 판형구조를 고려하여 설계함으로서 열전달 면적을 넓히거나 난류유동을 발생시켜 열전달율을 높이는 연구를 진행 할 필요가 있다.

  • PDF

Stability of premixed double concentric jets flame with a recirculation zone (재순환역을 수반하는 동축분류예혼합화염에 관한 연구)

  • 이등헌일;송규근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.145-153
    • /
    • 1987
  • Stability limits of a double concentric jets flame and the structure of recirculation zone formed behind a thick burner rim were investigated. To control the flame stability, swirled secondary air flow ranging 0.13-0.71 of swirl number, and air, fuel, and mixture gas injection from an injection coaxial slit set on burner rim were examined. Flame stability limits, flame shapes, lengths of recirculation zone, temperature distributions, residence times, air ratios in the recirculation zone were measured. The following results were obtained. (1) Lean limits were considerably widened by a strong swirl because the recirculation zone was enlarged. (2) At fuel injection as well as mixture injection, lean limits were also extended. But, air injection had no effect on stability limits. (3) Injected gas seems to diffuse into the recirculation zone through its outer boundary surrounded the secondary air. Therefore, chemical structure in the recirculation zone with air injection coincides with that without injection. (4) Injection position had no effect on flame stability limits.

A Thermodynamic Study on Suction Cooling-Steam Injected Gas Turbine Cycle (吸氣冷却-蒸氣噴射 가스터빈 사이클에 관한 열역학적 연구)

  • 박종구;양옥룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.77-86
    • /
    • 1992
  • This paper discusses the thermodynamic study on the suction cooling-steam injected gas turbine cycle. The aim of this study is to improve the thermal efficiency and the specific output by steam injection produced by the waste heat from the waste heat recovery boiler and by cooling compressor inlet air by an ammonia absorption-type suction cooling system. The operating region of this newly devised cycle depends upon the pinch point limit and the outlet temperature of refrigerator. The higher steam injection ratio and the lower the evaporating temperature of refrigerant allow the higher thermal efficiency and the specific output. The optimum pressure ratios and the steam injection ratios for the maximum thermal efficiency and the specific output can be found. It is evident that this cycle considered as one of the most effective methods which can obtain the higher thermal efficiency and the specific output comparing with the conventional simple cycle and steam injected gas turbine cycle.