• Title/Summary/Keyword: 연소배기특성

Search Result 402, Processing Time 0.03 seconds

Burner combustion characteristics of hybrid type water mixing emulsion fuel (하이브리드형 물혼합 에멀젼 연료의 버너 특성)

  • Kim, Cheol-Jeong;Kim, Dong-Kwon;Park, Kweon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.308-315
    • /
    • 2013
  • Water emulsion technology has the problem of unstable combustion due to the rapid separation of water. To solve the problem, a hybrid mixing device was developed. The device attached on the burner was tested. As a result, the fuel consumption reduced to 12% in the similar condition of exhaust emissions and flame temperature, and 45.5%, 98.5% and 97.2% of NOx, CO, and smoke were reduced at the same inlet air and fuel flow rate.

Effect of fuel injection timing and pressure on the combustion and spray behavior characteristics of diesel fuel for naval vessel (연료분사시기와 압력이 함정용 디젤연료의 분무 및 연소특성에 미치는 영향)

  • Lee, Hyung-min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.911-917
    • /
    • 2015
  • The objective of this work focuses on the analysis of injection rate and macroscopic spray behavior characteristics with injection pressures as well as combustion and exhaust emission characteristics with injection timing and injection pressure by using a common rail single-cylinder diesel engine. The injection rate was measured by applying the Bosch method, and macroscopic spray behavior characteristics were analyzed with a constant-volume vessel and a high-speed camera. In addition, combustion and emission characteristics were analyzed in a common-rail single-cylinder diesel engine with precise control of fuel injection timing and pressure. For injection pressures of 30MPa and 50MPa, the injection rate was higher at 50 MPa, and the spray development (penetration) was also higher in the same elapsed time. The peak in-cylinder pressure and rate of heat release showed a tendency to decline as injection timing was delayed, and the peak in-cylinder pressure and rate of heat release were slightly higher for higher injection pressures. Higher injection pressures also reduced the mean effective pressure, while the indicated mean effective pressure and torque increased as injection timing was delayed to TDC. Nitrogen oxides had a peak level at injection timings of $BTDC20^{\circ}$(30MPa) and $BTDC15^{\circ}$(50MPa); carbon monoxide emissions were reduced by delaying injection timing from $BTDC30^{\circ}$.

Design and Experimental Verification of Uni-Injector Using Gas Methane and Lox as Propellants (가스메탄/액체산소를 추진제로 하는 단일 인젝터 설계 및 실험적 검증)

  • Jeon, Jun Su;Min, Ji Hong;Jang, Ji Hun;Ko, Young Sung;Kim, Sun Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.275-283
    • /
    • 2013
  • An injector that uses methane gas ($CH_4$) and liquid oxygen ($LO_x$) as propellants was designed to verify the combustion characteristics of an engine that uses methane, which is one of the next-generation propellants. A swirl/shear coaxial-type injector was used, and flow analysis was performed using Fluent to determine the main design parameters of the injector. A hydraulic test was performed to understand the atomization and spray pattern characteristics of the injector. Next, a combustion test was performed at the design point to understand the ignition and combustion stability. Additional combustion tests were performed according to the O/F ratio to investigate the combustion characteristics and stabilities using the characteristic exhaust velocity ($C^*$) and fluctuation of the chamber pressure. The experimental results showed that the combustion efficiency was greater than 90%, and the pressure fluctuation was lower than 2% under all conditions.

A Study on the Characteristics of Spray and Engine Combustion of Diesel-DME Blended Fuel (Diesel-DME 혼합연료의 분무 및 엔진 연소특성에 관한 연구)

  • Yang, Ji Woong;Jung, Jae Hoon;Lim, Ock Taeck
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.73-80
    • /
    • 2013
  • The purpose of this study was compared the spray, combustion and emissions (NOx, CO, HC, smoke) characteristics of a typical fuel (100% Diesel, DME) and Diesel-DME blended fuel in a Constant Volume Chamber (CVC) and a single-cylinder DI diesel engine. Spray characteristics were investigated under various ambient and fuel injection pressures when the Diesel-DME blended ratio is varied. The parameters of spray sturdy were spray shape, penetration length, and spray angle. Common types of injectors having seven holes and made by Bosch were used. As of use, the typical fuel (100% Diesel, DME) and the blended fuel by mixture ratio 95:5, 90:10 (Diesel:DME) were used. The Injection pressure was fixed by 70.1MPa, when the ambient Pressure was varied 0.1, 2.6 and 5.1 MPa. The combustion experiments was conducted with single cylinder engine equipped with common rail injection system. injection pressure is 70 MPa. The amount of injected fuels is adjusted to obtain the fixed input calorie value as 972.2 J/cycle in order to compare with the fuel conditions.

A Study on the Characteristics of Fuel Consumption and Emissions of Diesel Vehicles Using Engine Coolant Flow Rate On/Off Control (엔진 냉각수 유량 단속에 의한 디젤 차량의 연비 및 배기가스 특성 연구)

  • Kim, Sung Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2069-2074
    • /
    • 2013
  • The use of the electromagnetic clutch water pump for internal combustion engine vehicles saves fuel and leads to a reduction in emissions. The clutch water pump allows the engine cooling system to select the optimum operation condition by using coolant flow rate on/off control. This study investigated the characteristics of fuel consumption and emissions of the diesel engine cooling system using the clutch water pump. The electromagnetic clutch operation reduced by about 49% of engine warm up period at idle condition and controlled the optimum high coolant temperature at driving condition. Therefore, fuel consumption was enhanced by about 5%, and emissions such as HC, CO and $CO_2$ were also reduced to a certain degree even though NOx increased a little bit, compared to those of the conventional water pump under NEDC mode which represents the real driving pattern.

수소-천연가스를 이용한 중대형 동력시스템 이용기술 개발에 관한 연구

  • Kim, Jong-U
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.60-75
    • /
    • 2005
  • 천연가스차량이 배출하는 미연 탄화수소 중 약 80%이상이 메탄으로 구성 되어있다. 메탄은 그 자체로 유독성 물질은 아니지만 이산화탄소와 더불어 지구온난화를 유발하는 온실가스로 향후 강력한 규제가 예상되는 물질로 이를 저감하는 기술 개발이 이루어져야하나 연료 특성상 이를 줄이는데 어려움이 있다. 최근 연구에 의하면 천연가스엔진에 수소를 일정량(15%이상) 첨가할 경우 배출가스 및 성능 이 상당량 개선되는 결과를 보이고 있다. 이는 종래 천연가스 연소의 문제점인 지연된 화염 전파 속도를 수소 연료를 첨가함에 따라 화염 전파속도를 촉진시켜 적정한 연소를 야기 시켜 미연탄화수소 배출이 줄어들고 열효율도 향상되는 결과를 보이고 있다. 이와 같이 수소와 천연가스연료의 각각의 장점을 활용한 Hy-thane 엔진을 개발할 경우 무공해엔진에 근접한 초 저공해 동력장치 개발이 가능하며 이에 대한 상용화 측면에서 산업용 발전기, GEHP, 차량용 엔진 등 활용도가 크기 때문에 그 개발이 절실히 필요하다고 할 수 있다. 따라서 본 과제에서는 이중연료를 사용하는 수소-천연가스 기관을 개발하고 이를 효과적으로 제어할 수 있는 제어시스템을 개발하여, 기관효율 향상과 배기가스저감을 이루었다.

  • PDF

A Study on the Engine Performance and Combustion Characteristics of Fish Oil in a Diesel Engine (디젤기관에서의 어유의 연소특성과 기관성능에 관한 연구)

  • 서정주;왕우경;안수길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.85-93
    • /
    • 1994
  • The engine performance and combustion characteristics of diesel oil and fish oil blended with diesel oils were investigated at various blending rate of fish oil in a diesel engine. The maximum pressure showed no significant difference among test fuels at low load, but it was higher as the blending rate of fish oil increases at high load. Increasing the blending rate of fish oil, the rate of heat release and burned fraction were higher than those of diesel oil. The ignition delay became longer than that of diesel oil as the blending rate of fish oil increases, and its differences were larger at different loads. The combustion duration and density of smoke were shorter and lower as the blending rate of fish oil increases. The rate of fuel consumption showed no significant difference between diesel oil and fish blended with diesel oils.

  • PDF

Characteristics of Low Temperature Combustion in Single Cylinder Engine by High EGR Rate (단기통 엔진에서 대유량 EGR을 통한 저온 연소 특성)

  • Cho, Sang-Hyun;Oh, Kwang-Chul;Lee, Chun-Beom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.79-85
    • /
    • 2009
  • Low temperature combustion regime for the simultaneous reduction of nitrogen oxides ($NO_x$) and paticulate matter (PM) is demonstrated in single cylinder engine at various operating parameters, such as EGR rate, injection timing, EGR temperature, amount of fuel and swirl rate. Low temperature combustion is accomplished by high exhaust gas recirculation (EGR) rate in this study. Generally, the emission of $NO_x$ almost completely disappears and PM significantly increases in the first decreasing regime of oxygen concentration but after peaking about 10~12% oxygen concentration, PM then decreases regardless of fuel injection quantity. Low temperature combustion regime was extended by low EGR temperature, high injection pressure and low amount of fuel.

Characteristics of Chemical Reaction between $NO_x$ in Combustion Gases and Ethanol (연소배기가스내의 $NO_x$와 에탄올과의 화학반응 특성)

  • 정철헌;이상권;김지용;한영욱
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.213-214
    • /
    • 1999
  • 발전소, 소각시설 및 산업공정에서 다량으로 배출되는 질소산화물(NOx)을 처리하기 위하여 과잉공기 연소시 고온에서 암모니아(NH$_3$)나 요소(CO(NH$_2$)$_2$)를 환원제로 사용하는 SNCR법, 그리고 암모니아와 각종 촉매를 사용하여 NOx를 $N_2$로 환원시키는 SCR법이 주로 개발ㆍ상용화되었다. 최근 90년대 초반부터 NOx의 제거기술은 Cu-ZSM-5, Alumina 통의 경제적이고 효과적인 촉매의 개발과 암모니아 사용으로 인한 부담요소를 제거하고자 다양한 HCs를 대체사용하는 방향으로 많은 연구가 진행되었다.(중략)

  • PDF

A Study on Vibration Characteristics for Misfiring Condition of Large Marine Diesel Engines using Accelerometer Signal (가속도 신호를 이용한 대형 선박용 디젤엔진의 착화실패 상태에 대한 진동 특성 연구)

  • Seo, Jong-Cheol;Kim, Sang-Hwan;Kim, Jung-Sung;Lee, Don-Chool
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.578-579
    • /
    • 2010
  • 최근 내연 기관에서 엔진상태 및 잠재적인 결함의 발견을 위해 연료분사, 실린더 내 연소과정, 실린더 내부와 피스톤 마모상태, 흡 배기 밸브 및 과급기 (turbocharger) 등의 상태 모니터링을 통해서 결함에 대한 진단 및 경향관리에 대한 연구들이 진행되고 있다. 본 연구에서는 기 개발된 선박용 대형디젤엔진에 대한 상시 모니터링 시스템을 이용하여 엔진상태 및 잠재적인 결함을 진단하고자 하였으며, 일차적으로 가속도 신호를 이용하여 실린더 내 연소과정에서 정상적인 상태와 착화실패에 따른 진동 양상을 비교 분석하였다. 신호 분석 기법으로 시간-주파수 분산 기법들은 충격파 신호인 엔진 폭발신호를 분석하는데 적합하였으며, 그 기법들 중 Short Time Fourier Transform 기법과 Wavelet Transform 기법을 이용하였다.

  • PDF