• Title/Summary/Keyword: 연성 강성 효과

Search Result 116, Processing Time 0.026 seconds

A Study on the Dynamic Response of RC "L" Joint Under the Simulated Seismic Load (모의 지진하중을 받는 RC "L" joint의 동적거동에 관한 연구)

  • 박승범;청궁리
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.3
    • /
    • pp.100-107
    • /
    • 1982
  • 최근 철근 콘크리트 구조물의 지진하중 및 이와 유사한 진동하중에 대한 내진안전성 문제가 대두되어 이에 관한 모형공식체의 진동실험 및 실존구조물의 동적구조특성의 해석 등에 의한 내진성 향상을 위한 보강방법이 강구되고 있다. 본 연구에서는 진동하중에 파괴되기 쉬룬 철근 콘크리트 보와 기둥이 상호 교차되는 죠인트 구역의 동적파괴거동을 확인하기 위하여 "L"형 철근 콘크리트 죠인트와 부재를 제작, 모의지진하중 조건하에서의 동적 응답특성을 구명하고자 반복하중에 따른 joint구역과 보 및 기둥의 동적파괴거동을 고찰하였다. 특히 내진구조물 설계에 주요 요소인 연성(m)이 0.5, 1.0, 3.0일 때 각각 3회씩 그리고 m=5.0일 때 부재가 완전히 파괴될 때까지 4회 반복하여 반복하중을 작용시키면서 이때의 부재의 극한강도 및 그 변형성능을 LVDT System을 사용하여 조사분석하였으며, 파괴성상은 물론 배근효과에 대하여도 이를 구명하고자 노력하였다. 본 연구 결과 무엇보다도 부재의 강성과 내력의 향상 및 신축만곡, 전단변형 등의 변형성능의 개선 그리고 보의 휨파괴에 대한 보강 및 joint구역의 전단보강은 내진구조물 설계를 위하여 중요 사항임을 확인하였다.

  • PDF

Response Analysis of RC Bridge Piers due In Multiple Earthquakes (연속지진하중에 의한 철근콘크리트 교량 교각의 응답해석)

  • Lee Do-Hyung;Jeon Jong-Su;Park Tae-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.357-367
    • /
    • 2004
  • In this paper, the effect of cumulative damage for reinforced concrete bridge piers subjected to both single and multiple earthquakes is investigated. For this purpose, selected are three set of accelerograms one of which represents the real successive input ground motions, recorded at the same station with three months time interval. The analytical predictions indicate that piers are in general subjected to a large number of inelastic cycles and increased ductility demand due to multiple earthquakes, and hence more damage in terms of stiffness degradation is expected to occur. In addition, displacement ductility demand demonstrates that inelastic seismic response of piers can significantly be affected by the applied input ground motion characteristics. Also evaluated is the effect of multiple earthquakes on the response with shear. Comparative studies between the cases with and without shear indicate that stiffness degradation and hence reduction in energy dissipation capacity of piers are pronounced due to the multiple earthquakes combined with shear. It is thus concluded that the effect of multiple earthquakes should be taken into account for the stability assessment of reinforced concrete bridge piers.

An Experimental Study on Retrofit Effect of Shear Wall with Opening Using Steel Bar or Steel Plate (강봉 및 강판을 이용한 개구부를 갖는 전단벽의 보강효과에 관한 실험 연구)

  • Choi, Youn-Cheul;Bae, Baek-Il;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.129-138
    • /
    • 2009
  • Recently, for more demands of the economical benefits and environmental conservation, many engineers prefer to choose remodeling. Artificial openings are often unavoidable to make house wider, which will degrade wall strength and stiffness by losing effective wall section that may cause the weakening of system capacity. In these cases the damaged shear walls need to be retrofitted by additional materials or members. In this research, four specimens were tested to investigate the capacity of the damaged wall and the retrofitted wall. The artificially damaged wall was prestressed by tendons to improve the shear capacity of the wall, and the other walls were retrofitted by adding steel plate at the surface for the same purpose. Consequently, these retrofitted walls had improved capacity and stiffness in both shear and flexure. Especially, the wall with steel plate showed ductile behavior after ultimate load and the prestressed wall had greater stiffness than the unstrengthened prototype wall.

Experimental Investigation of the Lateral Load Capacity and Strength Characteristics of a Steel Plate Concrete (SC) Shear Wall (비보강 강판콘크리트 전단벽의 횡하중 성능 및 강도특성에 대한 실험적 평가)

  • Cho, Sung-Gook;So, Gi-Hwan;Kim, Doo-Kie;Kwon, Min-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.23-32
    • /
    • 2012
  • Research on steel plate concrete (SC) structures for the modularization of nuclear power plants have been performed recently in Korea. In this study, the seismic capacity and stiffness characteristics of unstiffened SC shear walls under the effects of earthquakes were investigated through static pushover tests. Failure modes, sectional strength, and stiffness characteristics of SC structures under lateral loads were inspected by analyzing the experimental results. The strengths obtained by the experiments were also compared with those derived by the design code of the SC structures. One of the main failures of unstiffened SC shear walls was found to be the type of bending shear failure due to the debonding of the steel plate at the concrete interface. The ductility capacity of SC structures was also confirmed to be improved, which is considered to be a confining effect on steel plates in the longitudinal behavior of SC structures.

Experimental Investigation of Lateral Retrofitting Effect with CFRP and BRB (Buckling-Restrained Brace) for Beam-column Joints of Low-Rise Piloti Buildings (탄소섬유시트와 비좌굴 가새를 이용한 저층 필로티 구조물의 보-기둥 연결부의 횡방향 보강효과에 관한 실험적 연구)

  • Seo, Sang-Hoon;Yoo, Yeon-Jong;Lee, Young-Hak;Kim, Hee-Cheul;Lee, Ki-Hak;Lee, Han-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.45-52
    • /
    • 2009
  • The purpose of this study is to evaluate the structural capacities of beam-column specimens retrofitted with CFRP sheet and BRB (Buckling-Restrained Brace) under sustained axial and cyclic lateral loads. Three specimens were made using different retrofitting methods : non-retrofitted, retrofitted with CFRP sheets only, and retrofitted with both CFRP sheet and BRB systems. Lateral load resistant capacities were evaluated based on the load-displacement relations. From the results, the maximum lateral forces of the FRP sheet retrofitted and both the FRP and BRB retrofitted specimens showed approximately 34% and 138% improvement, respectively, compared with the non-retrofitted specimen.

Experimental Study on Hysteretic Behavior of 100 MPa Ultra High-Strength Concrete Tied Columns (100 MPa 초고강도 콘크리트 띠철근 기둥의 이력거동에 관한 실험적 연구)

  • Kim, Jong-Keun;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.161-168
    • /
    • 2006
  • An experimental investigation was conducted to examine the hysteretic behaviors of ultra-high strength concrete tied columns. The purpose of this study is to investigate the safety of ultra-high strength concrete columns with 100 MPa compressive strength for the requirement of ACI provisions. Eight 1/3 scaled columns were fabricated to simulate an 1/2 story of actual structural members with the cross section $300{\times}300mm$ and the aspect ratio 4. The main variables are axial load ratio, configurations and volumetric ratios of transverse reinforcement. The results show that the deformability of columns are affected by the configurations and volumetric ratios of transverse reinforcement. Especially, it has been found that the behavior of columns are affected by axial load ratio rather than the amounts and the configurations of transverse reinforcement. Consequently, to secure the ductile behavior of 100 MPa ultra-high strength concrete columns, ACI provisions for the requirement of transverse steel may considered axial load level and the details of transverse reinforcement.

Response of Bridge Piers Retrofitted by Stainless Steel Wire under Simulated Seismic Loading (내진 모사하중에 의한 스테인레스강 와이어 보강 교각의 응답)

  • Choi, Jun Hyeok;Kim, Sung Hoon;Lee, Do Hyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.343-350
    • /
    • 2009
  • In the present study, a new seismic retrofitting method that employs both a stainless steel wire mesh and a permeable polymer concrete mortar was proposed for reinforced concrete bridge piers with nonseismic design details. For this purpose, a total of six nonseismically designed bridge piers were tested under lateral load reversals. The test results reveal that nonseismically designed piers with lap splices need to be retrofitted to resist earthquake induced forces. In addition, it was proven that the proposed retrofitting method can be useful in improving the strength, stiffness, and energy dissipation capacities of bridge piers designed nonseismically. It is thus expected that the proposed method may provide an improved ductility capacity without sudden softening of strength for bridge piers excursing inelastic displacement range.

Seismic Effect of LRB Base Isolator on Bridges (LRB 기초분리장치의 교량 내진효과)

  • Hwang, Eui Seung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.13-18
    • /
    • 1993
  • The purpose of this study is to analyze the seismic effects of Lead Rubber Bearing base isolators on bridges. Base isolation is the tool to minimize the effect of earthquake before the seismic force is transfered to the structure. Currently, many structures including the buildings, power plants, and bridges, were built and planned with base isolation method. The simple model is developed for bridges with Lead Rubber Bearings. Equations of motion are solved by Newmark ${\beta}$ method. Springs representing the base isolators are assumed as bilinear springs and piers are modeled as nonlinear springs implementing Q-HYST model. Analysis is performed for the selected bridge. El Centro (N-S) earthquake(1940) is used. Deck displacement, pier ductility and pier shear force are calculated for the various Lead Rubber Bearings.

  • PDF

Seismic Performance Evaluation of Flat Plate Structures Retrofitted with Steel Plates and Braces (강판과 가새로 보강된 무량판 구조물의 내진 성능평가)

  • Shin, Woo-Seung;Kim, Jin-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.451-458
    • /
    • 2008
  • In this study 3- and 6-story flat plate structures designed only for gravity load are retrofitted with steel plates and braces and their seismic performances are evaluated to verify the effect of seismic retrofit. According to the analysis results obtained from nonlinear static and dynamic analyses both the strength and stiffness are significantly enhanced as a result of the seismic retrofit. Especially the effect of column jacketing could be enhanced significantly when slabs were reinforced to prevent premature punching shear failure. When buckling-restrained braces are used instead of conventional braces, the structures showed more ductile behavior, especially in the 3-story structure.

Reversed Lateral Load Tests on RC Frames Retrofitted with BRB and FRP (좌굴방지가새와 FRP로 보강된 RC골조의 반복 횡하중 실험)

  • Lee, Han-Seon;Lee, Kyung-Bo;Hwang, Seong-Jun;Cho, Chang-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.683-692
    • /
    • 2011
  • In piloti-type low-rise RC residential buildings, severe damages have been usually concentrated at piloti stories under the earthquake. In this study, a piloti story was retrofitted by installation of buckling-restrained braces (BRB's) to increase strength and stiffness of piloti story and by application of fiber reinforced polymer (FRP) sheet on columns to avoid the brittle shear and axial failure of columns. To verify this retrofit performance, reversed cyclic lateral load tests were performed on 1:5 scale bare and retrofitted frames. The test results showed that yield strength (43.2 kN) appeared to be significantly larger than design value (30 kN) due to the increase of strength in the compression side, but the stiffness value (11.6 kN/mm) turned out to be approximately one-half of the design value (24.2 kN/mm). The reasons for this difference in stiffness were due to slippage at joint between the frame and the BRB's, displacement and rotation at footing. The energy absorption capacity of the retrofitted frame was 7.5 times larger than that of the bare frame. The change of the number of load cells under the footing from 2 to 1 reduced lateral stiffness from 11.6 kN/mm to 6 kN/mm, which was only three times larger than that of the bare frame (2.1 kN/mm).