• Title/Summary/Keyword: 연성변수

Search Result 424, Processing Time 0.029 seconds

Cyclic Seismic Performance of Reduced Beam Section Steel Moment Connections: Effects of Panel Zone Strength and Beam Web Connection Type (패널존 강도 및 보 웨브 접합방식이 RBS 철골 모멘트접합부의 내진거동에 미치는 영향에 관한 연구)

  • Lee, Cheol-Ho;Jeon, Sang-Woo;Kim, Jin-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.69-77
    • /
    • 2003
  • This paper presents test results on eight reduced beam section(RBS) steel moment connections. The testing program addressed bolted versus welded web connection and panel zone(PZ) strength as key variables, Specimens with medium PZ strength were designed to promote energy dissipation from both PZ and RBS regions such that the requirement for expensive doublet plates could be reduced. Both strong and medium PZ specimens with a welded web connection were able to provide satisfactory connection rotation capacity for special moment-resisting frames. On the other hand, specimens with a bolted web connection performed poorly due to premature brittle fracture of the beam flange of the weld access hole. If fracture within the beam flange groove weld was avoided using quality welding, the fracture tended to move into the beam flange base metal of the weld access hole. Plausible explanation of a higher incidence of base metal fracture in bolted web specimens was presented. The measured strain data confirmed that the classical beam theory dose not provide reliable shear transfer prediction in the connection. The practice of providing web bolts uniformly along the beam depth was brought into question. Criteria for a balanced PZ strength improves the plastic rotation capacity while reduces the amount of beam distortion ore also proposed.

Analytical Study on Effects of Gravity Load on Blast Resistance of Steel Compressive Members (강재압축재의 방폭성능에 대한 중력하중효과의 해석적 연구)

  • Lee, Kyungkoo;Lee, Moon Chang
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.273-280
    • /
    • 2015
  • Equivalent Single-Degree-of-Freedom(SDOF) analysis, most used for blast-resistant design, does not consider the effects of gravity load on the performance evaluation of blast resistance of structural members. However, since there exists gravity load on columns and walls of structures, the blast resistance of structural members should be evaluated considering gravity load on them. In this paper, an approach to reflect the gravity load effects on the equivalent SDOF analysis for dynamic blast response of structural members is proposed. For this purpose, the parametric studies using finite element analysis were performed by varying maximum blast load, blast load duration, and gravity load with constant the resistance and natural period of a structural member. The finite element analysis results were compared with the equivalent SDOF analysis results and the blast response of the structure member was estimated by conducting finite element analyses for various gravity loads. Finally, a graphical solution for ductility of a structural member with the variables of blast load, gravity load and structural member properties was developed. The blast response of structural members under gravity load could be estimated reasonably and easily by using this graphical solution.

Experimental and Numerical Study of Fire Resistance of Composite Beams (무피복 합성보의 내화성능에 대한 실험 및 해석적 연구)

  • Ahn, Jae Kwon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.143-153
    • /
    • 2015
  • In this paper, the standard fire resistance test under load and associated numerical study were carried out to evaluate the fire resistance of unprotected partially encased beams and slimfloor beams. The temperature evolution and the deflection increase of the composite beam specimens were investigated and the effects of the key behavioral parameters including the load ratio, the reinforcement, and the fire exposure were analyzed. The test results showed that the temperature rise of the partially encased beams and slimfloor beams is considerably slow compared to the conventional H-shape composite beams. Up to at least 90 minutes, the reinforcements in the partially encased composite beams maintained below the temperature at which the cold steel strength is sustained. Unprotected partially encased beams and slimfloor beams in the experimental program achieved the fire resistance more than 2 hours according to the limiting deflection criteria. This implies that unprotected partially encased beams and slimfloor beams can be very promising alternatives to enhancing the fire resistance of steel beams. This study also conducted the fully coupled thermal-stress analysis by using the commercial code ABAQUS to the thermal and structural behaviour of composite beams in fire. The numerical predictions provide acceptable correlations with the experimental results.

Mechanical reliability of Sn-37Pb BGA solder joints with high-speed shear test (고속전단 시험을 이용한 Sn-37Pb BGA solder joints의 기계적 신뢰성 특성 평가)

  • Jang, Jin-Kyu;Ha, Sang-Su;Ha, Sang-Ok;Lee, Jong-Gun;Moon, Jung-Tak;Park, Jai-Hyun;Seo, Won-Chan;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.65-70
    • /
    • 2008
  • The mechanical shear strength of BGA(Ball Grid Array) solder joints under high impact loading was investigated. The Sn-37Pb solder balls with a diameter of $500{\mu}m$ were placed on the pads of FR-4 substrates with ENIG(Electroless Nickel Immersion Gold) surface treatment and reflowed. For the High Temperature Storage(HTS) test, the samples were aged a constant testing temperature of $120^{\circ}C$ for up to 250h. After the HTS test, high speed shear tests with various shear speed of 0.01, 0.1, 1, 3 m/s were conducted. $Ni_3Sn_4$ intermetallic compound(IMC) layer was observed at the solder/Ni-P interface and thickness of IMC was increased with aging process. The shear strength increased with increasing shear speed. The fracture surfaces of solder joints showed various fracture modes dependent on shear speed and aging time. Fracture mode was changed from ductile fracture to brittle fracture with increasing shear speed.

  • PDF

A Study on the Experiment of Flexural Behavior of Composite Beam with Steel Fiber Reinforced UHPC and Inverted-T Steel Considering Compressive Strength Level (압축강도 수준을 고려한 강섬유 보강 UHPC와 역T형 강재 합성보의 휨거동 실험 연구)

  • Yoo, Sung-Won;Suh, Jeong-In
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.677-685
    • /
    • 2015
  • In a will to subdue the brittleness as well as the low tensile and flexural strengths of ordinary concrete, researches are being actively watched worldwide on steel fiber-reinforced Ultra High Performance Concrete (UHPC) obtained by admixing steel fibers in ultra high strength concrete. For the purpose of maximizing advantage of UHPC, this study removes the upper flange of the steel girder to apply an inverted T-shape girder for the formation of the composite beam. This paper intends to evaluate the behavior of the shear connectors and the flexural characteristics of the composite beam made of the inverted T-shape girder and UHPC slab using 16 specimens considering the compressive strength of concrete, the mixing ratio of steel fiber, the spacing of shear connectors and the thickness of the slab as variables. In view of the test results, it seemed that the appropriate stud spacing should range between 100 mm and 2 or 4 times the thickness of the slab. Moreover, the relative displacement observed in the specimens showed that ductile behavior was secured to a certain extent with reference to the criteria for ductile behavior suggested in Eurocode-4. The specimens with large stud spacing exhibited larger values than given by the design formula and revealed that the shear connectors developed larger ultimate strength than predicted owing to the action of UHPC and steel after non-composite behavior. Besides, the specimens with narrow stud spacing failed suddenly through compression at the upper chord of UHPC before reaching the full capacity of the shear connectors.

An Experimental Study on the Hysteresis Behavior of WUF-B Beam-Column Connection using SN Steel (건축구조용강재(SN490) 조립 H형강 기둥-보 접합부의 이력거동에 관한 실험적 연구)

  • Kim, Sun Hee;Lee, Seong Hui;Kim, Jin Ho;Kim, Dae Jung;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.807-815
    • /
    • 2008
  • The brittle failure where is occurred the welding position of column-beam flange of WUF-B connection that consider about a seismic detail possess a superior ductility capacity before Northridge earthquake 1994, require newly study about WUF-B connection. SAC Steel Project suggests a seismic detail to FEMA-350 by supporting of FEMA. It revise shape of weld access holes of WUF-B connection, welding processand welding material etc, In spite of these revision, AISC Seismic Provisions (2005) prescribe WUF-B connection using an only OMF. Recently in Korea, as the earthquake of about seismic intensity 5 occur, the necessity of revision for connection seismic detail comes to the front in Korea and FEMA-350 connection seismic details are going to include in KBC-2008 as it is. In this study, two column-beam connection specimens were marked by using SM490, SN490 built-up H-section, and based on WUF-B detail prescription of FEMA350. The parameters of the specimens are types of steel (SM, SN), and evaluate the capacities of structure and seismic by experiment. Finally we confirm a superior ductility capacity aboutspecimens JB-1 and JB-2, using SM490 and SN490,and these specimens had sufficient OMF and SMF seismic capacity, as indicated in AISC Seismic Provisions (2005).

Effects of Tool Materials on Corrosion Properties of Friction Stir Welded 409 Stainless steel (툴 재료가 마찰교반접합된 409 스테인리스강의 부식 특성에 미치는 영향)

  • Ahn, Byung-Wook;Choi, Don-Hyun;Song, Keun;Yeon, Yun-Mo;Lee, Won-Bae;Lee, Jong-Bong;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.42-42
    • /
    • 2009
  • 마찰교반접합 (Friction Stir Welding)은 1991년 영국 TWI에서 개발된 접합 법으로서 회전하는 툴이 재료내부에 삽입되면 툴과 재료사이에서 발생하는 마찰열에 의하여 온도가 상승하게 되어 재료는 연화되고, 이러한 재료 내부에서 회전하는 툴이 이동하게 되면 재료 내부는 기계적 교반에 의해 소성변형이 일어남과 동시에 접합이 이루어진다. 마찰교반접합은 동적 재결정에 의한 접합부의 미세한 결정립 형성으로 인하여 기계적 특성이 향상되며 보호 가스가 필요 없어 친환경적임과 동시에 용융 용접 법에 비해 접합 시 에너지 소모가 적으며 또한 접합 후 접합부에서의 변형이 상대적으로 적다는 장점이 있다. 이러한 장점을 가진 마찰교반접합은 알루미늄 합금, 마그네슘 합금 그리고 동 합금과 같은 저 융점 비철재료에 많은 연구와 적용 사례들이 있어왔다. 하지만 최근에는 일반 탄소강, 연강, 오스테나이트계 스테인리스강, 니켈 합금, 티타늄 합금과 같은 고융점 재료에도 연구 및 적용이 진행되고 있는 추세이다. 페라이트계 스테인리스강은 가격이 비싼 Ni을 함유하지 않아 오스테나이트계 스테인리스강에 비하여 강재의 가격은 낮으면서도 고온특성 및 내식성이 우수하여 건축용, 자동차 배기계용으로 널리 사용되고 있다. 하지만 이런 장점을 가진 페라이트계 스테인리스강을 기존의 용융 용접 법으로 접합 시 용접부 및 열영향부에서의 결정립의 조대화로 인한 인성 및 연성이 저하되며, 특히 예민화된 열영향부 입계 내에 Cr 탄화물이 석출되어 입계주변에 Cr 결핍 층을 형성되어 입계부식이 발생되는 문제점이 발생된다. 본 연구에서는 마찰교반접합을 이용하여 두께 3mm의 409 스테인리스강에 대해 맞대기 접합을 실시하였다. 접합 변수를 툴의 재료 (WC-12wt%Co, $Si_3N_4$)로 하여 접합을 실시하였고 접합 후 외관상태 점검, 광학 현미경과 주사 전자 현미경을 통하여 미세조직을 관찰하였으며 황산-황산동 부식 시험을 실시하여 접합부의 부식 특성을 평가하였다.

  • PDF

Evaluation of the Stress Corrosion Cracking Behavior of Inconel G00 Alloy by Acoustic Emission (음향 방출에 의한 인코넬 600 합금의 응력 부식 균열 거동 평가)

  • Sung, Key-Yong;Kim, In-Sup;Yoon, Young-Ku
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.3
    • /
    • pp.174-183
    • /
    • 1996
  • Acoustic emission(AE) response during stress corrosion cracking(SCC) of Inconel 600 alloy has been monitored to study the AE detectability of crack generation and growth by comparing the crack behavior with AE parameters processed, and to evaluate the applicability as a nondestructive evaluation(AE) by measuring the minimum crack size detectable with AE. Variously heat-treated specimens were tensioned by constant extension rate test(CERT) in various extension rate to give rise to the different SCC behavior of specimens. The AE amplitude level generated from intergranular stress-corrosion cracking(IGSCC) is higher than those from ductile fracture and mechanical deformation, which means the AE amplitude can be a significant parameter for distinguishing the An source. AE can also provide the effective means to identify the transition from the small crack initiation and formation of dominant cracks to the dominant crack growth. Minimum crack size detectable with AE is supposed to be approximately 200 to $400{\mu}m$ in length and below $100{\mu}m$ in depth. The test results show that AE technique has a capability for detecting the early stage of IGSCC growth and the potential for practical application as a NDE.

  • PDF

Development on Glass Formulation for Aluminum Metal and Glass Fiber (유리섬유 및 알루미늄 금속 혼합물 유리조성 개발)

  • Cho, Hyun-Je;Kim, Cheon-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.247-254
    • /
    • 2012
  • Vitrification technology has been widely applied as one of effective processing methods for wastes generated in nuclear power plants. The advantage of vitrifying for low- and intermediate-level radioactive wastes has a large volume reduction and good durability for the final products. Recently, a filter using on HVAC(Heating Ventilating & Air Conditioning System) is composed with media (glass fiber) and separator (aluminum film) has been studied the proper treatment technology for meeting the waste disposal requirement. Present paper is a feasibility study for the filter vitrification that developing of the glass compositions for filter melting and melting test for physicochemical characteristic evaluation. The aluminum metal of film type is preparing with 0.5 cm size for proper mixing with glass frit, glass fiber is also preparing with 1 cm size within crucible. The glass compositions should be developed considering molten glass are related with wastes reduction. Glass compositions obtained from developing on glass formulation are mainly composed of $SiO_2$ and $B_2O_3$ for aluminum metal. A variety of factors obtained from the glass formulation and melting test are reviewed, which is feeding rate and glass characteristics of final products such as durability for implementing the wastes disposal requirement.

Cycllic Seismic Testing of Full-Scale RBS (Reduced Beam Section) Steel Moment Connections (RBS 철골모멘트접합부의 내진거동평가를 위한 반복재하 실물대(實物大) 시험)

  • Lee, Cheol Ho;Jeon, Sang Woo;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.557-566
    • /
    • 2002
  • This paper summarized the results of a full-scale cyclic seismic testing on four reduced beam section (RBS) steel moment connections. Specifically, these tests addressed a bolted web versus a welded web connection and strong versus medium panel zone (PZ) strength as key test variables. Specimens with medium PZ strength were designed to promote balanced energy dissipation from both PZ and RBS regions, in order to reduce the requirement for expensive doubler plates. Both strong and medium PZ specimens with welded web connection were able to provide sufficient connection rotation capacity required of special moment-resisting frames. On the other hand, specimens with bolted web connection performed poorly due to premature brittle fracture of the beam flange at the weld access hole. Unlike the case of web-welded specimens, specimens with cheaper bolted web connection could not transfer the actual plastic moment of the original (or unreduced) beam section to the column. No fracture occurred within the beam groove welds of any connection in this testing program. If fracture within the beam flange groove weld is avoided by using quality welding procedure as in this study, the fracture issue tends to move into the beam flange base metal at the weld access hole. Supporting analytical study was also conducted in order to understand the observed base metal fracture from the engineering mechanics perspective.