• Title/Summary/Keyword: 연륜생장

Search Result 88, Processing Time 0.024 seconds

Tree-Ring Growth Characteristics of Pinus thunbergii Parl. after Replanting on the Reclaimed Land from the Sea in Gwangyang Bay (광양만 임해매립지의 곰솔 이식 이후의 연륜생장 특성)

  • 김도균;박원규;서정욱
    • Korean Journal of Environment and Ecology
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • This study was carried out to examine the tree-ring growth characteristics of Pinus thunbergii Parl. after replanting on the reclaimed land from the sea in Kwangyang bay, The factors, mostly affecting the growths of Pinus thunbergii Parl. , were the replanting stress and drought. The growth reduction due to replanting occurred in the replanting year and following year, but that due to drought after 2-3 years of replanting. The growth recovery after replanting differed with soil condition. The sites showing fast recovery were the covered ground of improve soil, the ground of medium mounding, the top and the slope ground of big mounding sites. The filled ground of improve soil and the lower ground of big mounding sites showed retarded growths. The mean sensitivity(year-to-year variation) and the coefficient of variation(tree-to-tree variation in a certain year) in tree rings of Pinus thunbergii Parl. were higher in the poor soil sites than in the favourable soil ones. The physical characteristics of the soil, especially soil hardness, were the most crucial. The mean sensitivity and the coefficient of variation were also low in the salty soil environment.

Relationships between Climate and Tree-Rings of Pinus densiflora in the Ridges of the Baekdudaegan, Korea (백두대간 마루금일대 소나무의 연륜생장과 기후와의 관계)

  • Park, Sang-Gon;Joo, Sung-Hyun;Lee, Kwang-Hee;Park, Won-Kyu
    • Journal of agriculture & life science
    • /
    • v.44 no.5
    • /
    • pp.35-43
    • /
    • 2010
  • To examine the relationship between climate and tree-ring growth of Pinus densiflora S. et Z. growing in the ridges of the Baekdudaegan, it was analyzed the sample cores of 48 trees were collected from 21 sites. After the pattern of tree rings of all Pinus densiflora were cross-dating each other, it was recognized the growth of Pinus densiflora was affected by climate largely when tree-ring chronologies were standardized to remove the age-related growth. As a cluster analysis was conducted to examine the similarity of chronologies, three clusters were classified, the tree-ring growths of Pinus densiflora was not by regional or elevational gradients but by the growth tree-ring width amplitude as micro-site growth environments. Correlation coefficients between the chronologies of three clusters and monthly climate (temperature and precipitation) factors were obtained. As a result, tree-ring growth of Pinus densiflora was more affected by temperature than precipitation and the trees of high-growth cluster possessed less climatic influences.

Effect of Climate Factors on Tree-Ring Growth of Larix leptolepis Distributed in Korea (기후인자가 일본잎갈나무의 연륜생장에 미치는 영향 분석)

  • Lim, Jong Hwan;Sung, Joo Han;Chun, Jung Hwa;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.1
    • /
    • pp.122-131
    • /
    • 2016
  • This study was conducted to analyze the effect of climatic variables on tree-ring growth of Larix leptolepis distributed in Korea by dendroclimatological method. For this, annual tree-ring growth data of Larix leptolepis collected by the $5^{th}$ National Forest Inventory were first organized to analyze yearly growth patterns of the species. To explain the relationship between tree-ring growth of Larix leptolepis and climatic variables, monthly temperature and precipitation data from 1950 to 2010 were compared with tree-ring growth data for each county. When tree-ring growth data were analyzed through cluster analysis based on similarity of climatic conditions, six clusters were identified. In addition, index chronology of Larix leptolepis for each cluster was produced through cross-dating and standardization procedures. The adequacy of index chronologies was tested using basic statistics such as mean sensitivity, auto correlation, signal to noise ratio, and expressed population signal of annual tree-ring growth. Response function analysis was finally conducted to reveal the relationship between tree-ring growth and climatic variables for each cluster. The results of this study are expected to provide valuable information necessary for estimating local growth characteristics of Larix leptolepis and for predicting changes in tree growth patterns caused by climate change.

Analysing the Relationship Between Tree-Ring Growth of Quercus acutissima and Climatic Variables by Dendroclimatological Method (연륜기후학적 방법에 의한 상수리나무의 연륜생장과 기후인자와의 관계분석)

  • Moon, Na Hyun;Sung, Joo Han;Lim, Jong Hwan;Park, Ko Eun;Shin, Man Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.93-101
    • /
    • 2015
  • This study was conducted to analyze the relationship between tree-ring growth of Quercus acutissima and climatic variables by dendroclimatological method. Annual tree-ring growth data of Quercus acutissima collected by the $5^{th}$ National Forest Inventory (NFI5) were organized to analyze the spatial distribution of the species growth pattern. To explain the relationship between tree-ring growth of Quercus acutissima and climatic variables, monthly temperature and precipitation data from 1950 to 2010 were compared with tree-ring growth data for each county. When tree-ring growth data were analyzed through cluster analysis based on similarity of climatic conditions, four clusters were identified. In addition, index chronology of Quercus acutissima for each cluster was produced through cross-dating and standardization procedures. The adequacy of index chronologies was tested using basic statistics such as mean sensitivity, auto correlation, signal to noise ratio, and expressed population signal of annual tree-ring growth. Response function analysis was conducted to reveal the relationship between tree-ring growth and climatic variables for each cluster. The results of this study are expected to provide valuable information necessary for estimating local growth characteristics of Quercus acutissima and for predicting changes in tree growth patterns caused by climate change.

Correlation Analysis and Growth Prediction between Climatic Elements and Radial Growth for Pinus koraiensis (잣나무 연륜생장과 기후요소와의 상관관계 분석 및 생장예측)

  • Chung, Junmo;Kim, Hyunseop;Lee, Sangtae;Lee, Kyungjae;Kim, Meesook;Chun, Yongwoo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.85-92
    • /
    • 2015
  • This study was conducted to analyze the relationship among climatic factors and radial growth of Pinus koraiensis in South Korea. To determine climate-growth relationships, cluster analysis was applied to group climatically similar surveyed regions, and dendroclimatological model was developed to predict radial growth for each climate group under the RCP 4.5 and RCP 8.5 scenarios for greenhouse gases. The dendroclimatological models were developed through climatic variables and standardized residual chronology for each climatic cluster of P. koraiensis. 2 to 4 climatic variables were used in the models ($R^2$ values between 0.35~0.49). For each of the climatic clusters for Pinus koraiensis, the growth simulations obtained from two RCP climate-change scenarios were used for growth prediction. The radial growth of the Clusters 2 and 3, which grow at high elevation, tend to increase. In contrast, Cluster 1, which grows at low elevation, tends to decrease with a large difference. Thus, the growth of Pinus koraiensis, which is a boreal species, could increase along with increasing temperature up to a certain point.

The Dendrochronological Characteristic of Pinus densiflora in Gyeongbuk Region (경북 지역 소나무의 연륜생태학적 특성에 관한 연구)

  • Lee Sang-Tae;Yoon Seok-Lak;Park Eun-Hee;Kim Jong-Kab;Chung Young-Gwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.4
    • /
    • pp.289-295
    • /
    • 2005
  • This paper reports on the dendrochronological investigation of tree ring growth of Pinus densiflora in the Gyeongbuk region. Tree ring growth was analysed using basic statistical value and correlation analysis to evaluate the relative contribution of climatic factors. Ta extract age-related trends and nonclimatic signals, each measurement series was standardized using a negative exponential growth function. In the Gyeongbuk region, tree ring growth was positively correlated with the current year in February, March and April, January, February, and March precipitation showed a positive correlation with the current growth year. This suggests that climatic factors (monthly average temperature, precipitation) limit breaking of dormancy and promotion of growth of Pinus densiflora in the Gyeongbuk region.

Analysing the Relationship Between Tree-Ring Growth of Pinus densiflora and Climatic Factors Based on National Forest Inventory Data (국가산림자원조사 자료를 활용한 소나무 연륜생장과 기후인자와의 관계분석)

  • Lim, Jong-Hwan;Park, Go Eun;Moon, Na Hyun;Moon, Ga Hyun;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.2
    • /
    • pp.249-257
    • /
    • 2017
  • This study was conducted to analyze the relationship between tree-ring growth of Pinus densiflora and climate factors based on national forest inventory(NFI) data. Annual tree-ring growth data of P. densiflora collected by the $5^{th}$ NFI were first organized to analyze yearly growth patterns of the species. Yearly growing degree days and standard precipitation index based on daily mean temperature and precipitation data from 1951 to 2010 were calculated. Using the information, yearly temperature effect index(TEI) and precipitation effect index(PEI) were estimated to analyze the effect of climate conditions on the tree-ring growth of the species. A tree-ring growth estimation equation appropriate for P. densiflora was then developed by using the TEI and PEI as independent variables. The tree-ring growth estimation equation was finally applied to the climate change scenarios of RCP 4.5 and RCP 8.5 for predicting the changes in tree-ring growth of P. densiflora from 2011 to 2100. The results indicate that tree-ring growth of P. densiflora is predicted to be decreased over time when the tree-ring growth estimation equation is applied to the climate change scenarios of RCP 4.5 and RCP 8.5. It is predicted that the decrease of tree-ring growth over time is relatively small when RCP 4.5 is applied. On the other hand, the steep decrease of tree-ring growth was found in the application of RCP 8.5, especially after the year of 2050. The results of this study are expected to provide valuable information necessary for estimating local growth characteristics of P. densiflora and for predicting changes in tree-ring growth patterns caused by climates change.

Effect of Climate Change on the Tree-Ring Growth of Pinus koraiensis in Korea (기후변화가 잣나무의 연륜생장에 미치는 영향 분석)

  • Lim, Jong Hwan;Chun, Jung Hwa;Park, Ko Eun;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.3
    • /
    • pp.351-359
    • /
    • 2016
  • This study was conducted to analyze the effect of climate change on the tree-ring growth of Pinus koraiensis in Korea. Annual tree-ring growth data of P. koraiensis collected by the $5^{th}$ National Forest Inventory were first organized to analyze yearly growth patterns of the species. When tree-ring growth data were analyzed through cluster analysis based on similarity of climatic conditions, five clusters were identified. Yearly growing degree days and standard precipitation index based on daily mean temperature and precipitation data from 1951 to 2010 were calculated by cluster. Using the information, yearly temperature effect index(TEI) and precipitation effect index(PEI) by cluster were estimated to analyze the effect of climatic conditions on the growth of the species. Tree-ring growth estimation equations by cluster were developed by using the product of yearly TEI and PEI as independent variable. The tree-ring growth estimation equations were applied to the climate change scenarios of RCP 4.5 and RCP 8.5 for predicting the changes in tree-ring growth by cluster of P. koraiensis from 2011 to 2100. The results of this study are expected to provide valuable information necessary for estimating local growth characteristics of P. koraiensis and for predicting changes in tree-ring growth patterns caused by climate change.

Correlation Analysis between Climatic Factors and Radial Growth and Growth Prediction for Pinus densiflora and Larix kaempferi in South Korea (소나무와 일본잎갈나무의 연륜생장과 기후 요소와의 상관관계 분석 및 생장예측)

  • Chung, Junmo;Kim, Hyunseop;Kim, Meesook;Chun, Yongwoo
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.1
    • /
    • pp.77-86
    • /
    • 2017
  • This study was conducted to analyze the relationship among climatic factors and radial growth of Pinus densiflora and Larix kaempferi in South Korea. To determine the climate-growth relationship, cluster analysis was applied to group surveyed regions by the climatical similarity, and a dendroclimatological model was developed to predict radial growth for each climate group under the RCP 4.5 and RCP 8.5 scenarios for greenhouse gases. The cluster analysis showed four climatic clusters (Cluster 1~4) from 10 regions for P. densiflora and L. kaempferi. The dendroclimatological model was developed through climatic variables and standardized residual chronology for each climatic cluster of P. densiflora and L. kaempferi. Four climatic variables were used in the models for P. densiflora ($R^2$ values between 0.38 to 0.58). Two to five climatic variables were used in the models for L. kaempferi ($R^2$ values between 0.31 to 0.43). The growth simulations with two RCP climate-change scenarios(RCP 4.5 and RCP 8.5) were used for growth prediction. The radial growth of the Cluster 4 of P. densiflora, the mountainous region at high elevation, tend to increase, while those of cluster 2 and 3 of P. densiflora, the region of the hightest average temperature, tends to decrease. The radial growth of the Cluster 1 of L. kaempferi the region of the lowest minimum temperature, while that of Cluster 2, the region of the highest average temperature, tends to decrease. The radial growth of Cluster 3 of L. kaempferi, the region in the east coast and Cluster 4, the region at high elevation, tends to hold steady. The results of this study are expected to provide valuable information necessary for predicting changes in radial growth of Pinus densiflora and Larix kaempferi caused by climate change.

Growth of Daphniphyllum macropodum and Climatic Factors at Mt. Naejang, Korea (내장산 지역 굴거리나무의 연륜생장과 기후요소와의 관계)

  • 구경아;박원규;공우석
    • The Korean Journal of Quaternary Research
    • /
    • v.14 no.1
    • /
    • pp.65-71
    • /
    • 2000
  • The growth of Daphniphyllum macropodum at Mt. Naejang National Park(Naejang temple area) was investigated in connection with the climatic factors by the use of tree-ring analysis. A pair of cores was extracted from each of 18 trees in the D. macropodum community area near Younjabong for the analysis. The period of mater chronology based upon D. macropodum covers from 1915 to 1998. The growth rates of D. macropodum were very poor in the years 1920, 1932, 1934, 1937, 1942, 1946, 1964, 1969 and 1985, respectively. Response function was employed to understand the relationship between the growth of D. macropodum and climatic factors. The response function of the growth rates of D. macropodum indicated significant negative correlation with the precipitation of August and September. Poor growth of D. macropodum during the August and September nay be due to the frequent rain periods during the summer The heavy rain during the summer seems to decrease the solar radiation, which eventually caused the decrease of photosynthesis capacity. In conclusion, we hypothesize that the decrease of the photosynthesis rates during the rainy summer seasons may cause the slower growth of D. macropodum.

  • PDF