• Title/Summary/Keyword: 연료-공기혼합도

Search Result 229, Processing Time 0.029 seconds

Combustion Characteristics of CH4 Nonpremixed Flame with Recession Distance (메탄 비예혼합 화염의 후퇴거리에 따른 연소특성)

  • Kim, Jun-Hee;Ku, Kun-Woo;Hong, Jung-Goo;Lee, Choong-Won;Kim, In-Su;Cheong, In-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.285-291
    • /
    • 2012
  • A lot of research on the stability of nonpremixed flames has focused on the fuel-nozzle and quarl geometries. Of the work carried out, only a small amount has focused on the stability of the nonpremixed flame according to the recession distance and air-nozzle geometry. Therefore, in this study, a coaxial-diffusion-type gas burner with a swirler is designed for the systematic investigation of the combustion characteristics of a $CH_4$ flame depending on the recession distance and secondary air-nozzle geometry. 1st air is flowed through the swirler, and 2nd air is flowed through each nozzle. It is shown that the secondary air velocity greatly influences the flame length and shape. There is an optimum recession distance for each nozzle for the best combustion efficiency. In this study, it is shown that the optimized recession distance is nearly half the outer diameter of the air-supply nozzle.

A study on flame bifurcation due to inlet mixture temperature and swirl strength in a swirl turbulent combustor (스월 난류연소기의 흡입공기온도, 스월세기에 따른 연소불안정 발생 메커니즘에 대한 연구)

  • Kim, Jong-Chan;Sung, Hong-Gye;Ryu, Hyeok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.377-380
    • /
    • 2007
  • Large Eddy Simulation has been conducted to investigate both stable and unstable flame structures in a swirl turbulent combustor. While a flame is stabilized with periodic dynamic structure at 600K, a slight increase in the flame temperature of inlet mixture, 660K, lead to bifurcation of flame at swirl angle 45 degrees. It was observed that both swirl number and mixture temperature affect a flame bifurcation and the former is a major parameter. One major mechanism contributing to the unstable flame is that the local flame speed overshadows the local flow velocity near the wall of the combustor.

  • PDF

Axisymmetric Simulation of Nonpremixed Counterflow Flames - Effects of Fuel Concentration on Flame Structure - (비예혼합 대향류 화염의 축대칭 모사 - 연료농도가 화염구조에 미치는 영향 -)

  • Park Woe-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.3 s.20
    • /
    • pp.44-50
    • /
    • 2003
  • The axisymmetric methane-air counterflow flame was simulated to investigate changes in the flame structure due to the fuel concentration and to evaluate the numerical method. The global strain rates $a_g=20,\;60,\;90\;s^{-1}$ and the mole fractions of methane $x_m=20,\;50,\;80\%$ in the fuel stream were taken to be numerical parameters. The axisymmetric simulation was conducted by using the Fire Dynamics Simulator (FDS) which employed a mixture fraction combustion model, and the results were compared with those of OPPDIF, which is an one-dimensional flamelet code and includes detail chemical reactions. In all the cases tested, there was good agreement in the temperature and axial velocity profiles between the axisymmetric and one-dimensional simulations. It was shown that the flame thickness and peak flame temperature increase and the flame radius decreases as the fuel concentration increases.

  • PDF

A Performance Study of Vent Mixer with Geometric Characteristics in Supersonic Flow (초음속 유동 내 벤트 혼합기의 형상적 특성에 따른 성능 연구)

  • Kim, Chae-Hyoung;Jeung, In-Seuck
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.69-75
    • /
    • 2009
  • This paper studies the aerodynamic performance that the vent mixer-new conceptual supersonic mixer-showed with its geometric characteristics. The hole is 2 mm with 2 mm's distance from the wall in case 1 and with no distance in case 2. In case 3 die hole is 1 mm. Case 1 and case 2 showed the same total pressure recovery ratio, of which the case 3 was lower than that. While cases 1-3 had the same reattachment length, the shear layer was thicker in cases 1 and 2 than in case 3. Within the recirculation zone, cases 1 and 2 had lower pressure loss and higher velocity gradient difference than case 3-they enhance mixing between air and fuel. Separation bubble which is developed by the inflow into the recirculation zone has a significant effect on the total pressure recovery ratio in the combustor. Also separation bubble influences pressure distributions and recirculation flows in the recirculation zone. Therefore, inflow rate of air into the recirculation zone mainly affects the performance of vent mixer.

The Study on Smart Farm of Apple Mango with Energy-mix Hybrid (애플망고 농가의 에너지-믹스 하이브리드 스마트 팜에 대한 연구)

  • Son, Jae Hwan;Lee, Seung Yong;Han, Chang Woo;Nah, Kyu Dong;Ha, Yu Shin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.155-155
    • /
    • 2017
  • 최근 애플망고 스마트 농가에 에너지 사용량이 증가됨에 따라 에너지 절감을 위한 대책들과 화석연료를 대체하는 다양한 신재생에너지 도입에 대한 요구들이 늘고있다. 본 연구에서는 애플망고 스마트 농가에 여러 에너지원들을 혼합하여 사용할 수 있도록 실증시험 모델을 구축하고 운영함으로써 그 효용성을 검토하고자 하였다. 우선 애플망고 특성을 고려한 비닐온실의 최대 냉난방부하량과 에너지모델을 분석하여 신재생 에너지원들의 혼합 및 기존 공조설비와의 연계를 계산하였다. 애플망고 시험 농지로는 재배에 적합한 제주도 서귀포를 선정하였으며, 기존의 경유 난방기를 사용하는 비교시험 하우스, 기존의 경유와 태양광, 지하 공기 히트펌프 난방기를 혼합하여 사용하는 실증시험 하우스, 경유와 지하공기 히트펌프 난방기를 사용하는 대조시험 하우스를 10~11월 두 달간 운영하여 그 결과들을 평가하였다. 온실 내외부에 온도, 습도, CO2를 측정할 수 있는 6점의 센서부들을 설치하였고, 적산 전력계와 유량계를 설치하여 데이터를 수집하였으며, 모든 시험 데이터는 모바일 원격으로 제어 및 모니터링이 가능하도록 구성하였다. 시험 결과, 각 하우스들에서 수확한 과실의 수량과 품질은 유사하게 평가되었지만, 실증시험 하우스의 난방비가 비교시험 하우스보다 절감되었다. 하지만 실증시험 하우스의 경우 높은 시설유지비로 인해 이를 고려한 사용료는 비교시험 하우스보다 더 비싸게 평가되었다. 본 연구를 통해 생산된 잉여전력을 매전할 때 이로 인한 이용비는 비교시험 하우스보다 더 경제적임을 확인할 수 있었다. 또한 기존의 경유와 지하공기 히트펌프 난방기를 혼합한 대조시험 하우스의 난방비용이 경제성에서 더 유리함을 알 수 있었다. 따라서 본 연구를 통해 애플망고 스마트 농가에 적합한 에너지-믹스 모델을 구축할 수 있었으며, 다양한 신재생에너지들의 효용성들을 검토할 수 있었다.

  • PDF

Numerical Study on the Evaporation Characteristics of Biocrude-oil Produced by Fast Pyrolysis (급속열분해를 통하여 생산된 바이오오일 액적의 증발 특성에 관한 수치해석적 연구)

  • Choi, Sang Kyu;Choi, Yeon Seok;Kim, Seock Joon;Han, So Young
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.646-652
    • /
    • 2016
  • Biomass is regarded as one of the promising energy sources to deal with the depletion of fossil fuels and the global warming issue. Biocrude-oil can be produced through the fast pyrolysis of biomass feedstocks such as wood, crops, agricultural and forestry residues. It has significantly higher viscosity than that of conventional petroleum fuel and contains solid residues, which can lower the spray and atomization characteristics when applied to the burner. In addition, biocrude-oil consists of hundreds of chemical species derived from cellulose, hemicellulose and lignin, and evaporation characteristics of the biocrude-oil droplet are distinct from the conventional fuels. In the present study, a numerical study was performed to investigate the evaporation characteristics of biocrude-oil droplet using a simplified composition of the model biocrude-oil which consists of acetic acid, levoglucosan, phenol, and water. The evaporation characteristics of droplets were compared at various surrounding air temperatures, initial droplet diameters, and ethanol mixing ratios. The evaporation time becomes shorter with increasing air temperature, and it is much sensitive to the air temperature particularly in low temperature ranges. It was also found that the biocrude-oil droplet evaporates faster in cases of the smaller initial droplet diameter and larger ethanol mixing ratio.

Effect of Compression Ratio Change on Emission Characteristics of HCNG Engine (압축비 변화가 수소-천연가스 엔진의 배기특성에 미치는 영향)

  • Lee, Sung Won;Lim, Gi Hun;Park, Cheol Woong;Choi, Young;Kim, Chang Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.473-479
    • /
    • 2013
  • This study focused on a heavy-duty natural gas engine fuelled with HCNG (CNG: 70 vol%, hydrogen: 30 vol%) and CNG. To study the emission characteristics of an HCNG engine with high compression ratio, the exhaust gas of CNG and HCNG fuel were analyzed in relation to the change in the compression ratio at the half load condition. The results showed that the thermal efficiency improved with an increase in the compression ratio. Consequently, $CO_2$ emission decreased. CO emission increased with inefficient oxidation due to the low exhaust gas temperature. $NO_x$ emission with high compression ratio was increased at the same excess air ratio condition. However, $NO_x$ emission was not affected by a compression ratio exceeding ${\lambda}$ = 1.9 because of the same MBT timing.

Numerical Study of Turbulent Flow and Combustion in a Micro Combustor with a Baffle Plate (배플이 부착된 마이크로 연소기의 난류유동 및 연소에 대한 수치해석 연구)

  • Kim, Won Hyun;Park, Tae Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.20-29
    • /
    • 2013
  • Turbulent flow and combustion characteristics in a micro can combustor with a baffle plate are investigated by a Reynolds Stress Model. In order to examine the geometric effects on the turbulent combusting flow, several baffle configurations are selected. The interrelation between the flow structure and the thermal field are investigated by examing the variation of recirculation region, flame length and heat loss. For the flow mixing, the decreasing air hole is more efficient than the decrease of the fuel hole. As the fuel or air hole diameter decreases, combustion efficiency is enhanced and flame length is decreased. Additionally, as the diameter of air hole decreases, the heat loss and combustion temperature are increased, while they are reduced with decreasing the diameter of fuel hole.

Study of Flame Response Characteristics to External Acoustic Perturbations (외부압력 교란에 의한 연소반응 연구 고찰)

  • Seo, Seong-Hyeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.415-418
    • /
    • 2011
  • It is critical to assess the characteristics of flame response to pressure perturbations for the understanding of nonlinear combustion instabilities. Previous studies can be grouped into flame response upon perturbed, fresh air and fuel mixture, and flame response directly perturbed from longitudinal waves. The present study presents experimental methodology for the understanding of the flame response exposed to transverse acoustic waves generated by loud speakers.

  • PDF

Study of Performance and Knock Characteristics with Compression Ratio Change in HCNG Engine (HCNG 엔진에서 압축비 변경에 따른 성능 및 노킹 특성 연구)

  • Lim, Gi Hun;Lee, Sung Won;Park, Cheol Woong;Choi, Young;Kim, Chang Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.387-394
    • /
    • 2013
  • Hydrogen-compressed natural gas (HCNG) blend has attracted attention as a fuel that can reduce $CO_2$ emissions because it has low carbon content and burns efficiently. An increase in the compression ratio of HCNG engines was considered as one of the methods to improve their efficiency and reduce $CO_2$ emissions. However, a high combustion rate and flame temperature cause abnormal combustion such as pre-ignition or knocks, which in turn can cause damage to the engine components and decrease the engine power. In this study, the performance and knock characteristics with a change in the compression ratio of an HCNG engine were analyzed. The combustion characteristics of HCNG fuel were evaluated as a function of the excess air ratio using a conventional CNG engine. The effects of the compression ratio on the engine performance were evaluated through the same experimental procedures.