• Title/Summary/Keyword: 연료펌프(fuel pump)

Search Result 218, Processing Time 0.036 seconds

Temperature Variation of Exhaust Gas in Diesel Generator for Low Pressure SCR (저압 SCR을 위한 디젤발전기 배기가스 온도 변화)

  • Hong, Chul Hyun;Lee, Chang Min;Lee, Sang Duk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.355-362
    • /
    • 2021
  • To facilitate low-pressure selective catalyst reduction (L.P SCR), a high exhaust-gas temperature of a four-stroke diesel engine for a ship's generator is required. This study aimed at reducing the exhaust-gas temperature by adjusting the valve open-close timing and fuel injection timing to satisfy the operating conditions of L.P SCR and prevent accidents associated with the generator engine due to high temperature. To lower exhaust-gas temperature, the angle of the camshaft was adjusted and the shim of the fuel injection pump was added. As a result, the maximum explosion pressure increased and the average of the turbocharger outlet temperature dropped. Considering the heat loss from the turbocharger outlet to the SCR inlet, the operation condition for L.P SCR was satisfied with 290 ℃. The study demonstrates that safe operation of a diesel generator can be achieved by lowering the exhaust-gas temperature.

A Study on Purge Gas Inflow according to Valve Operation Sequence during Staged Combustion Cycle Engine Reignition Test (다단연소 사이클 엔진 재점화 시험 시 밸브 작동순서에 따른 퍼지가스 유입에 대한 연구)

  • Hwang, Changhwan;Lee, Jungho;Kim, Chaehyeong;Jeon, Jun-Su;Park, Jae-Young;Lee, Kwang-Jin;Cho, Nam-Kyung;Kim, SeungHan;Han, Yeoungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.4
    • /
    • pp.64-71
    • /
    • 2022
  • For the development of an improved upper-stage engine, research on a staged combustion cycle liquid rocket engine is in progress. A cold flow test, ignition test, and combustion test plans were established and performed to develop reignition combustion technology. In order to solve the problem of purge gas flowing into the fuel line, which may cause cavitation in the turbo pump during reignition, the test results of each stage were analyzed. Based on the analysis results, the purge gas inflow problem was solved by reducing the overlapping time between the operation of the bubble removal valve and the opening of the purge valve and the engine fuel valve. Based on this, the reignition combustion test was successfully performed.

The quality improvement study on the crack of heat exchanger lubricating oil port in military aircraft (군용항공기 열교환기 윤활유 유입포트 균열개선 연구)

  • Park, Sung-Jae;Choi, Jae-Ho;Choi, Gil-Gyu;Lee, Dong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.164-172
    • /
    • 2020
  • The fuel oil/heat exchanger installed in military aircraft is a device that cools the lubricant oil supplied to other devices, such as an AMAD, and a hydraulic pump using the low temperature of the fuel is cracked at the AMAD lubricant inlet port. If a crack in the heat exchanger occurs, the lubricant oil supplied to other equipment is not cooled. Therefore, the flight can no longer be performed. In this study, non-destructive inspection and microscopic examination of the fracture surface of the oil port were performed to analyze the crack tendency. The oil pipe connected to the oil port is a titanium pipe, which is fastened with over torque and has been identified as the leading cause of heat exchanger oil port cracks. In addition, it was verified as the main reason for cracking by finite element analysis. The material and diameter of the pipe were changed to improve this defect, and the applied torque was adjusted. In addition, the bending value of the pipe was adjusted to minimize the fatigue accumulation due to pulsating pressure. As a result, no cracks occurred on the heat exchanger via the ground test after the installation of an improved pipe under the same conditions.

A Study on the Comparison of Injection Rate Measurement by the Bosch`s Method and the Zeuch`s Method (Bosch법과 Zeuch법에 의한 분사율 , 측정의 비교연구)

  • Ra, Jin-Hong;Kim, Jun-Hyo;An, Su-Gil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.1
    • /
    • pp.65-75
    • /
    • 1990
  • There have been many methods for measuring the injection rate of diesel engines, but the results of them are not always identical and the reason for the discordance is not clear. Besides, a single shot injection equipment has been used for the fuel spray and the combustion research of diesel engines, but the results of experiment using the equipment don't apply to a volleyed shot injection of real engines. This paper investigates the merits and faults of the Bosch's method and the Zeuch's method, at the same, this paper also compares the injection rates of single shot inject rates of single shot injection and a volleyed shot injected by the Bosch's method. the results are summarized as follows: (1) The measurement error of the Bosch's method is about $\pm$1%, therefore, its accuracy is reliable. (2) By the Bosch's method, as the speed and the load of fuel pump increase, the injection rate becomes higher, on the contrary, the injection period(ms) shortens as the speed increases and the load decreases. (3) In this experiment, the injection rate of a single shot injection is lower than that of a volleyed shot injection under the same conditions. (4) The bulk modulus of elasticity using the Zeuch's method increases in proportion to the back pressure. (5) The Zeuch's method is less accurate than the Bosch's method.

  • PDF

Vibration Identification of Gasoline Direct Injection Engine Based on Partial Coherence Function (부분기여도 함수를 이용한 직접분사 가솔린 엔진 부품의 진동원 분석)

  • Chang, Ji-Uk;Lee, Sang-Kwon;Park, Jong-Ho;Kim, Byung-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1371-1379
    • /
    • 2012
  • This paper presents a method for estimating the contribution of vibration sources in gasoline direct injection engine parts with a multiple-input system. A partial coherence function was used to identify the cause of the linear dependence indicated by an ordinary coherence function. To apply the partial coherence function to vibration source identification in the powertrain system of a gasoline direct injection engine, a virtual model of a two-input and single-output system is simulated. For the validation of this model, the vibration of the powertrain parts was measured by using triaxial accelerometers attached to the selected vibration sources-a high-pressure pump, fuel rail, injector, and pressure sensor. After calculating the partial coherence between each source based on the virtual model, the vibration contribution of the powertrain system is calculated. This virtual model based on the partial coherence function is implemented to determine the quantitative vibration contribution of each powertrain part.

The Loss of Coolant Flow Accident Analysis in Kori-1 (고리1호기 원자로 냉각재 유량상실사고 해석)

  • Kook Jong Lee;Un Chul Lee;Jin Soo Kim;Si Hwan Kim
    • Nuclear Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.256-266
    • /
    • 1985
  • The loss of coolant flow accident is analyzed for the pressurized water reactor of Korea Nuclear Unit-1. The loss of coolant flow accident is classified into three types in accordance with its severity; partial loss of coolant flow, complete loss of coolant flow and pump locked rotor accident. Analysis has been carried out in three stages; system transient and average core analysis, DNBR calculation and hot spot analysis. The purpose of developing KTRAN is to simulate the transient fast. For the DNBR calculation, the thermal hydraulic codes, SCAN and COBRA IV-1, are adopted. And for the hot spot analysis, the fuel thermal transient code LTRAN is employed. This code system should be fast responding to the transient analysis. In case the transient occurs, severity comes within a couple of seconds. So response should be fast to accomodate the following sequence of the accident. Unfortunately this purpose could not be achieved by KTRAN. However, the calculated results are well comparable with FSAR results in range. Thereby, the effectiveness of KTRAN code analysis in this type of accident is proven.

  • PDF

Development of 30-Tonf LOx/Kerosene Rocket Engine Combustion Devices(II) - Gas Generator (추력 30톤급 액체산소/케로신 로켓엔진 연소장치 개발(II)-가스발생기)

  • Choi, Hwan-Seok;Seo, Seong-Hyeon;Kim, Young-Mog;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.1038-1047
    • /
    • 2009
  • The development process of a gas generator for a 30-tonf pump-fed space liquid rocket engine is described. Starting from the development of an injector, followed by subscale and full-scale test specimens, the development of LOx/kerosene fuel-rich gas generator has been concluded successfully. Various analytical methods have been utilized in the course of design and the performance requirements have been verified experimentally through ignition tests, combustion performance and stability assessment tests and duration tests. The gas generator has proven its workability and stability within a defined operation window of varying chamber pressure and mixture ratio and demonstrated compliance to the performance and life time requirements.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.