• 제목/요약/키워드: 연료탱크 소음

검색결과 15건 처리시간 0.022초

승용차량용 연료탱크 슬로싱 현상에 대한 실험적 고찰 및 평가 방법에 대한 연구 (Experimental Study and Evaluation Method for Sloshing Noise of Fuel Tank on Passenger Vehicle)

  • 안세진;윤성호
    • 한국소음진동공학회논문집
    • /
    • 제24권6호
    • /
    • pp.444-451
    • /
    • 2014
  • The signal patterns of slosh noise produced by the fuel tank of a passenger vehicle are characterized by analyzing vehicle interior noise, fuel tank vibration, and near-field noise radiated from the fuel tank. This paper also shows the noise transfer path analysis results performed from the fuel tank to the vehicle inside. On top of them, physical index is described, demonstrating a good correlation with subjective feeling of slosh noise. It is essential to identify the main noise transfer paths for redesigning of the fuel tank system aiming at reducing slosh noise and also helpful to apply physical index in evaluating and reducing this noise. It is found that structure-borne path is the main root of slosh noise and a value reveals a good correlation with subjective feeling.

LPG 차량에 장착된 연료탱크의 방사소음 예측에 관한 연구 (Prediction of the radiated noise generated by fuel tank of LPG vehicle)

  • 이상권;김성종;이대엽;김태용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.869-874
    • /
    • 2006
  • Fuel tank noise of the LPG vehicle is getting more important for reduction of vehicle noise, because major noise of the vehicle was reduced. Therefore, in this paper, Fuel tank noise and vibration are measured, then the modal analysis is applied for prediction of fuel tank noise. To predict fuel tank noise, various methods are applied by using FEM and BEM techniques

  • PDF

LPG차량에 장착된 연료탱크의 구조 진동으로 인한 방사소음 예측에 관한 연구 (A Study on the Prediction of the Radial Noise Generated by Structural Vibration of the Fuel Tank in LPG Vehicle)

  • 김태용;김성종;이대엽;이상권
    • 한국소음진동공학회논문집
    • /
    • 제17권2호
    • /
    • pp.136-142
    • /
    • 2007
  • Fuel tank noise of the LPG vehicle is getting more important for reduction of vehicle noise, because major noise of the vehicle was reduced. Therefore, in this paper, Fuel tank noise and vibration are measured, then the modal analysis is applied for prediction of fuel tank noise. To predict fuel tank noise, various methods are applied by using FEM and BEM techniques.

승용차 연료탱크의 유량변화에 따른 진동 소음 특성 (Characteristics of Vibration and Noise due to Various Fuel Quantity in Vehicle Fuel Tank)

  • 안성덕;김찬묵;강태원;사종성;권요섭;임동민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.626-629
    • /
    • 2007
  • Vibration originated from the fuel pump is transmitted to the fuel pump module and fuel tank. Fuel tank transmits it to chassis of vehicle. Also, noise perturbed through fuel and fuel tank is radiated out. Dynamic characteristics of fuel tank are composed of tank structure and containing fuel quantity. Therefore, this study is focused at fuel tank with various quantity. As a result, characteristics of vibration for various fuel quantity in a tank are identified as the more mass of fuel is, the less the 1st resonance frequency decrease. Also, between acoustic camera and mode shape of modal analysis are used for searching the positions of radiated noise and are found to be in accordance with each other.

  • PDF

TPA 방법을 이용한 연료탱크의 슬로싱 소음에 관한 민감도 해석 (Sensitivity Analysis using TPA for Slosh Noise of Fuel Tank)

  • 차희범;윤성호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.356-360
    • /
    • 2007
  • Fuel sloshing in a vehicle fuel tank generates a reluctant low frequency noise, called slosh noise. To reduce slosh noise, whilst many approaches have used the Computational Fluid Dynamics method to first identify fuel behavior in a fuel tank, this paper applies the Transfer Path Analysis method. It is to find contribution of each transfer path from noise transfer function, vibration transfer function and acceleration. Then the final goal is to attenuate slosh noise by controlling them. To this aim, two types of models are studied. One is the decoupled model in which some of connection points of the fuel tank with the vehicle underbody are separated. The other is the modified model which is created by changing noise transfer function and acceleration from the original model. The analysis and validation test results show that the transfer path analysis can be an approach to enhancing slosh noise.

  • PDF

TPA 방법을 이용한 연료탱크의 슬로싱 소음에 관한 민감도 해석 (Sensitivity Analysis Using TPA for Slosh Noise of Fuel Tank)

  • 차희범;윤성호
    • 한국소음진동공학회논문집
    • /
    • 제17권8호
    • /
    • pp.766-770
    • /
    • 2007
  • Fuel sloshing in a vehicle fuel tank generates a reluctant low frequency noise, called slosh noise. To reduce slosh noise, whilst many approaches have used the Computational Fluid Dynamics method to first identify fuel behavior in a fuel tank, this paper applies the Transfer Path Analysis method. It is to find contribution of each transfer path from noise transfer function, vibration transfer function and acceleration. Then the final goal is to attenuate slosh noise by controlling them. To this aim, two types of models are studied. One is the decoupled model in which some of connection points of the fuel tank with the vehicle underbody are separated. The other is the modified model which is created by changing noise transfer function and acceleration from the original model. The analysis and validation test results show that the transfer path analysis can be an approach to enhancing slosh noise.

환원판 덮개를 갖는 원통형 연료탱크의 진동해석 (Vibration of Liquid-filled Cylindrical Storage Tank with an Annular Plate Cover)

  • 김영완
    • 한국소음진동공학회논문집
    • /
    • 제13권10호
    • /
    • pp.751-759
    • /
    • 2003
  • The theoretical method is developed to investigate the vibration characteristics of the sloshing and bulging mode for the circular cylindrical storage tank with an annular plate on free surface. The cylindrical tank is filled with an inviscid and incompressible liquid. The liquid domain is limited by a rigid cylindrical surface and a rigid flat bottom. As the effect of free surface waves Is taken into account in the analysis, the bulging and sloshing modes are studied. The solution for the velocity potential of liquid movement is assumed as a suitable harmonic function that satisfies Laplace equation and the relevant boundary conditions. The Rayleigh-Ritz method is used to derive the frequency equation of the cylindrical tank. The effect of Inner-to-outer radius ratio and thickness of annular plate and liquid volume on vibration characteristics of storage tank is studied. The finite element analysis is performed to demonstrate the validity of present theoretical method.

배플을 적용한 액체연료탱크 내의 슬로싱 억제 기법 연구 (Sloshing Minimization Technique in Liquid Fuel Tank By the Use of Baffle)

  • 박기진;윤성호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.917-920
    • /
    • 2003
  • The sloshing phenomenon sometimes happens to occur in a liquid fuel tank due to the unexpected and/or inevitable vibrating conditions and may result in severe effects on the structural stability. This study deals with the development of experimental techniques for the evaluation of sloshing behaviors in the liquid fuel tank and for the identification of natural frequencies and mode shapes by varying with various vibrating conditions. Measurements of the pressure and load acting on the side surface of vibrated liquid fuel tank are carried in order to identify the effects of sloshing phenomenon by using various types of baffles. The results show that the baffles can be used to minimize the sloshing phenomenon in liquid fuel tank effectively

  • PDF

연료공급 장치의 진동 특성에 대한 연구 (A study on the characteristics of vibration in fuel pump system)

  • 권요섭;김찬묵;강태원;사종성;강태식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.494-500
    • /
    • 2007
  • The comfort and quietness of vehicle has been improved greatly due to the development of technology in automobile industry. It is driven by reduction on the level of vibration and noise in powertrain system. However, the hidden problems in automobile parts become noticeable since the vehicle has been better in overall performance. One of them is related to the fuel pump system. Therefore, this study is focused on investigating the characteristics of fuel pump and fuel tank first, and then comparing the data before and after installation of fuel pump system in a testing vehicle. Additionally, the measured data will be analyzed to identify the problems and find a solution to improve the level of noise and vibration in fuel pump system.

  • PDF