• Title/Summary/Keyword: 연대구분

Search Result 123, Processing Time 0.021 seconds

The Commencement Period of the Korean Type Bronze Dagger Culture, Seen from the Condition of the Section Polishing Technique - Through the Chronology of Chinese Data - (구분마연 기술로 본 한국식동검문화의 개시 연대 - 중국 자료의 편년을 통하여 -)

  • Heo, Jun-Yang
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.3
    • /
    • pp.4-29
    • /
    • 2017
  • The purpose of this study is to grasp the commencement date of Korean-type bronze dagger through the chronology of Chinese data. It focuses on the fact that the same section polishing technique appears both in Korean type bronze dagger and Dongzhou type bronze dagger. Dongzhou type bronze dagger in Anqiu Shandong, in which A1 type section polishing technique is observed, was said to have been collected remains in 1958, but the clear excavation cannot be identified. Therefore, this study presents Tomb No.1 Zuojiawa Jinan, Dongzhou type bronze dagger, and associated products. As associated products, bronze weapon and bronze ware were excavated, whose periods are estimated to be in the Spring and Autumn period, the transition period of Warring States, and the former part of the China's Warring States. Accordingly, the Korean bronze dagger, excavated in the remains of the Han Peninsula appears to have run parallel with the Dongzhou type bronze dagger of the A1 type section polishing technique, excavated in China for a fixed period. In addition, the chronology of Tomb No. 61MI grave in Wanrongmiaoqian, Shanxi is estimated to range from the former part to the middle part of the China's Warring States, which is identified to be connected to the A1 type section polishing technique. Examining the data of the relative date, we can find out that the Commencement Period of the Korean type bronze dagger Culture is seen to be the transition period and the former part of the China's Warring States, which is estimated to be the 5th and 4th centuries BC. This chronology is followed by Tomb No.6512 Zhengjiawazi Shenyang, recorded as the 6th century B.C. which reveals that Liaoning type bronze dagger culture and Korean-typed Bronze Dagger Culture are naturally connected. Furthermore, the A1 type section polishing technique was distributed in the southwestern area of the Korean peninsula and Shandong, China, while the A2 type section polishing technique was distributed in the southern area of the Korean peninsula, Shanxi-Province in China, and Northern Kyushu region in Japan. Seen from the weapon-shaped bronze ware of the section polishing technique, Shanxi area(Central Plains area), China. the southwestern area of the Korean peninsula (northwest area), and Northern Kyushu region in Japan are set up as one traffic road(spreading route). This demonstrates that the section polishing technique emerged around the Han Peninsular, spreading the technique regionally.

A Study on Time & Space Division in Literature Classification (문헌분류법의 시.공간 전개체계에 관한 연구)

  • Kim, Ja-Hoo
    • Journal of Korean Library and Information Science Society
    • /
    • v.42 no.3
    • /
    • pp.5-24
    • /
    • 2011
  • The purpose of this study aims to provide possible suggestions for the improvement KDC 5th ed. as a system. After analyzing and evaluating time & space devices of KDC 5th ed.(including DDC 22th ed. and NDC 9th ed.). such as main schedules, common auxiliary tables, internal tables and notes, suggestions for the improvement were proposed. If above suggestions are adopted, effective literature classification scheme which is suited to domestic circumstances will be certainly prepared.

SHRIMP U-Pb Dating and Chronostratigraphy of the Volcanic Rocks around the Mireukdo Island, Tongyeong, Korea (통영 미륵도 주변 화산암류의 SHRIMP U-Pb 연대측정과 시간층서)

  • Hwang, Sang Koo;Lee, So Jin;Song, Kyo-Young;Yi, Keewook
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.25-36
    • /
    • 2018
  • The volcanic rocks around Mieukdo Island, Tongyeong, are classified as lower andesitic rocks (Jusasan Subgroup) and rhyolitic rocks (Unmunsa Subgroup), and upper andesitic rocks (Yokji Subgroup) and rhyolitic rocks (Saryang Subgroup). We confirmed their eruption timings and stratigraphic relationships, based on SHRIMP U-Pb zircon dating for zircons from major stratigraphic units of the subgroups. By the SHRIMP U-Pb dating, the samples yield the concordia ages of $88.95{\pm}0.44Ma$(n=11) in Punghwari Tuff and $82.56{\pm}0.95Ma$(n=10) in Chudo Tuff of the lower andesitic rocks, and $73.01{\pm}0.75Ma$(n=11) in Dara Andesite of the upper andesitic rocks. And then samples show a concordia age of $71.74{\pm}0.47Ma$(n=14) in Namsan rhyolite dyke of the upper rhyolitic rocks and an apparent age of $70.7{\pm}3.5Ma$ in granodiorite dyke, These data confirm the eruption or injection timings of the units and allow them to distinguish chronostratigraphy of Jusasan, Unmunsa, Yokji and Saryang Subgroups around the Mireukdo Island. In addition, the subgroups give a clue that can make a chronostratigraphical correlation with different volcanic units of the Late Cretaceous Yucheon Group in the Gyeongsang basin.

Districting the Growth Zone by Diameter Growth Pattern for Pinus densiflora in Kangwon Province (직경생장(直徑生長)패턴에 따른 강원도(江原道) 소나무의 생장권역(生長圈域) 구분(區分))

  • Song, Chul Chul;Byun, Woo Hyuk;Lee, Woo Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.1
    • /
    • pp.71-76
    • /
    • 1995
  • This study on Pinus desiflora in Kangwon Province has been performed for the purpose of classifying its growth area by geographical factors. To classify its growth area, the basic data which had were the measured values for annual ring width from cores were used. Individual variations in the measured values were removed through the standardization. Regional mean chronologies were estimated from the standardized values. The growth area was classified by the cluster analysis on the basis of the regional mean standardized indices. The results of this study shown that annual growth patterns to be clustered similar to geographical distribution in Kangwon Province. And the regional variations of annual growth patterns in the western part of Kangwon province were greater than those in the eastern part of Kangwon province.

  • PDF

Zircon chemical age of the Precambrian gneisses from Gimcheon area in the central Yeongnam massif, Korea (중부 영남육괴 김천일대 선캠브리아기 편마암의 저어콘 화학연대)

  • 이호선;송용선;박계헌
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.157-168
    • /
    • 2002
  • In Gimcheon area of the central Yeongnam massif granite gneiss occurrs with intercalated biotite gneiss at xenolith or restite. In order to understand the evolution of the central Yeongnam massif, it is essential to have absolute age information, but not many age data are available yet. Furthermore the previous age determinations from the study area are not compatible with the outcrop relationship. In this study we determined chemical ages from the zircon grains. We obtained ages of $1970\pm$ 78(l$\sigma$)Ma from the granite gneiss, $1814\pm$77(l$\sigma$)Ma from the outer rim of a rounded zircon and 1973$\pm$97(l$\sigma$)Ma from a longish zircon, both from the biotite gneiss. These ages seem to indicate the timing of granitic magma intrusion and subsequent metamorphism. Ages of $2954\pm$ 158($l\sigma$)Ma, 2440$\pm$58(l$\sigma$)Ma, and 2219$\pm$36($l\sigma$)Ma obtained from zoned core of the rounded zircon grain from the biotite gneiss suggest various geological events before such metamorphism of the biotite gneiss. Ages in the range of 1450~1670 Ma observed in zircons of both gniesses suggest later metamorphism that the granite gneiss and the biotite gneiss experienced together. The chemical age determination by electron probe micro-analyzer of this study utilized 1$\mu\textrm{m}$ beam diameter and it seems to be a very useful age determination from the zircons with complex growth history because of superior spatial resolution.

청주화강암의 U-Pb 스핀 연대

  • 정창식;정연중;길영우;정기영
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.53-53
    • /
    • 2003
  • 남한에 분포하는 현생 화강암류는 트라이아스기-쥬라기의 소위 대보화강암과 백악기-제3기의 불국사화강암으로 분류되어 왔다. 대보조산운동은 대동누층군의 퇴적이후에 일어난 조구조운동을 지칭하므로 트라이아스기의 화강암을 포함하는 대보화강암이라는 명칭은 그와 사실상 직접적인 관계는 없다. 트라이아스기-쥬라기의 화강암은 영덕, 청송 암체 외에는 경상분지 밖에 위치하고 백악기-제3기의 화강암은 속리산, 월악산 암체 외에는 경상분지 안쪽에 주로 분포한다. 트라이아스기-쥬라기의 화강암 중 영광-대전-청주-충주-원주-강릉 방면에 걸쳐 북동-남서 방향으로 분포하는 화강암질 저반은 남한에서 가장 넓은 면적을 차지하는 화강암체지만 신뢰할만한 연대측정 자료가 매우 부족한 실정이다. 이 화강암질 저반에 대해서는 Rb-Sr, K-Ar법이 해답을 주기 어렵다. 예를 들어 청주-음성-증평 지역의 화강암류에 대한 Rb-Sr 전암 자료는 분산이 심하며 약 380 Ma에 해당되는 초시선을 보여 기원물질의 불균질성 내지 불완전한 혼합 효과를 반영하고 있다. 옥천대와 영남육괴에 분포하는 일부 화강암체에 대해 잘못 보고된 Rb-Sr 전암연대 역시 모두 중광물의 U-Pb 연대보다 오래된 값을 보이는 것으로 보아 이들은 생성 당시부터 일정한 $^{87}$ Sr/$^{86}$Sr 초기치를 가지지 않고 Rb/Sr 비에 따른 양(+)의 기울기를 가졌음이 확실하다. 과잉의 방사기원 Ar을 가지거나 폐쇄온도가 낮은 광물들을 대상으로 한 K-Ar 자료 역시 화강암체의 관입편대를 정확하게 지시할 수는 없다. 우리는 이에 대한 연구의 일환으로 충청남도 청원군의 물류센터에서 채취한 중립질의 흑운모화강암 한 시료에 대한 U-Pb 스핀연대측정 결과를 다음과 같이 보고한다. $^{206}$ Pb$^{*}$ /$^{238}$ U age = 174.6$\pm$2.7 Ma $^{207}$ Pb$^{*}$ /$^{235}$ U age = 170.3$\pm$14.6 Ma $^{207}$ Pb$^{*}$ /$^{206}$ Pb sup */ age = 111$\pm$187 Ma 위에서 볼 수 있듯이 청주화강암의 스핀에 대해 콘코던트(concordant)한 연대가 얻어졌으며 자료의 오차, 스핀의 U-Pb계에 대한 폐쇄온도 및 화강암의 솔리더스(solidus)를 고려할 때 $^{206}$ Pb$^{*}$ /$^{238}$ U 연대인 174.6$\pm$2.7 Ma를 관입정치시기로 해석한다. 동일 시료의 흑운모에 대해서는 145 Ma의 Rb-Sr 연대가 얻어졌으며 따라서 관입이후 약 35$0^{\circ}C$까지 대략 1$0^{\circ}C$/Ma의 냉각속도를 구할 수 있었다. 청주화강암의 쥬라기 중기 연대는 영광-대전-청주-충주-원주-강릉 지역의 화강암질 저반이 대동누층군 퇴적 이후에 일어난 지구조 사건과 연관되었을 가능성을 지시하지만 이를 확인하기 위해서는 더 많은 자료가 요구된다. 우리는 현재 충주, 괴산 지역의 화강암체에 대해서도 스핀 연대측정을 수행중에 있으며 이들 자료를 암상을 구분하여 해석한다면 우리나라 중생대 지구조운동에 대한 새로운 사실이 밝혀질 수 있을 것으로 믿는다.

  • PDF

Revised Fission-track Ages and Chronostratigraphies of the Miocene Basin-fill Volcanics and Basements, SE Korea (한국 동남부 마이오세 분지 화산암과 기반암의 피션트랙 연대 재검토와 연대층서 고찰)

  • Shin, Seong-Cheon
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.83-115
    • /
    • 2013
  • Erroneous fission-track (FT) ages caused by an inappropriate calibration in the initial stage of FT dating were redefined by re-experiments and zeta calibration using duplicate samples. Revised FT zircon ages newly define the formation ages of Yucheon Group rhyolitic-dacitic tuffs as Late Cretaceous to Early Paleocene ($78{\pm}4$ Ma to $65{\pm}2$ Ma) and Gokgangdong rhyolitic tuff as Early Eocene ($52.1{\pm}2.3$ Ma). In case of the Early Miocene volcanics, FT zircon ages from a dacitic tuff of the upper Hyodongri Volcanics ($21.6{\pm}1.4$ Ma) and a dacitic lava of the uppermost Beomgokri Volcanics ($21.3{\pm}2.0$ Ma) define chronostratigraphies of the upper Beomgokri Group, respectively in the southern Eoil Basin and in the Waeup Basin. A FT zircon age ($19.8{\pm}1.6$ Ma) from the Geumori dacitic tuff defines the time of later dacitic eruption in the Janggi Basin. Based on FT zircon ages for dacitic rocks and previous age data (mostly K-Ar whole-rock, partly Ar-Ar) for basaltic-andesitic rocks, reference ages are recommended as guides for stratigraphic correlations of the Miocene volcanics and basements in SE Korea. The times of accumulation of basin-fill sediments are also deduced from ages of related volcanics. Recommended reference ages are well matched to the whole stratigraphic sequences despite complicated basin structures and a relative short time-span. The Beomgokri Group evidently predates the Janggi Group in the Eoil-Waeup basins, while it is placed at an overlapped time-level along with the earlier Janggi Group in the Janggi Basin. Therefore, the two groups cannot be uniformly defined in a sequential order. The Janggi Group of the Janggi Basin can be evidently subdivided by ca. 20 Ma-basis into two parts, i.e., the earlier (23-20 Ma) andesitic-dacitic and later (20-18 Ma) basaltic strata.

Illite Polytypes: The Characteristics and the Application to the Fault Age Determination (일라이트 폴리타입: 그 특성과 단층 활동연대 결정에의 활용)

  • Song, Yun-Goo
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.181-188
    • /
    • 2012
  • The 1M and $2M_1$ stacking sequences are the most frequently encountered in the illite species among the possible 6 polytypes. The $1M_d$, derived from the 1M polytype which exhibits a variable degree of disorder in the stacking sequence, is also observed in illite samples. In this paper, the author introduces and reviews the theoretical background of the quantitative analysis method of illite polytypes, and considers the possibility to determine the fault age and its reactivation age using K/Ar age-dating based on the quantification of illite polytypes in the fault system. For the increase of the accuracy and precision of the illite age analysis method, the occurrence, identification, and mineralogical characterization of illite polytypes should be defined in detail. The broadening effect of (hkl) reflections, due to disordering of 1M polytype and the presence of I/S minerals with expandability, are also considered as the main parameters controlling the quantification of illite polytypes using the WILDFIRE(C)simulation.

A Study on the Direction of Christian education in the Age of hyper connectivity Society (초연결성 사회에서의 기독교교육 방향 모색)

  • Chung, Ha Eun
    • Journal of Christian Education in Korea
    • /
    • v.71
    • /
    • pp.371-399
    • /
    • 2022
  • The era we are living in is an era of hyperconnectivity where boundaries and limitations of each field and domain disappear and organically converge and share with each other. Christians living in the age of hyperconnectivity are losing their direction of life due to various divisions and severances, such as holiness and secularity, church and world, soul and body, faith and life, and humans and nature. However, in a hyperconnected society, it is necessary to break free from division and conflict caused by disconnection, and realize the kingdom of God through connection and solidarity between humans, nature, and the world. In order to explore the direction of Christian education for this purpose, this study examined the characteristics of the era of hyperconnectivity and the principle of solidarity, which is the core of hyperconnectivity. The theological meaning of solidarity was examined in terms of humans, nature, and the world, and based on this understanding, the direction of Christian education in the era of hyperconnectivity was sought. It can be summarized as having a religious understanding of human beings of Homoconnectus with a pericoretic mode of existence. Third, education on the kingdom of justice and peace where we can live together in a solidarity relationship can be summarized.