• 제목/요약/키워드: 연관 마이닝

검색결과 489건 처리시간 0.034초

텍스트 마이닝을 이용한 비대면 소프트웨어 교양과목의 요구사항 분석 (An Analysis for the Student's Needs of non-face-to-face based Software Lecture in General Education using Text Mining)

  • 정화영
    • 한국콘텐츠학회논문지
    • /
    • 제22권3호
    • /
    • pp.105-111
    • /
    • 2022
  • 온라인 수업에 대한 학생들의 니즈 분석은 객관식 설문조사 유형이 주로 수행되어왔다. 그러나 학생들의 정확한 니즈를 분석하기 위해서는 주관식 답변에 의한 비정형 데이터 분석이 요구된다. 빅데이터는 비정형 데이터 분석이 가능하여 다양한 분야에서 활용되고 있다. 본 연구에서는 비대면 온라인 수업방식을 진행되는 교양 소프트웨어 과목에서 학생들이 원하는 과목이나 주제가 무엇인지 조사 및 분석하였다. 실험방법은 학생들에게 주관식 설문조사를 시행하여 얻은 비정형 데이터를 기반으로 빅데이터의 키워드 분석, 연관 분석등을 수행하였다. 이를 통해 학생들이 교양 소프트웨어 과목에서 원하는 키워드가 무엇인지 알 수 있었으며, 이러한 연구 결과는 학생들이 배우고자하는 주제를 파악할 수 있어서 향후 교양 소프트웨어 과목의 기획 및 설계시 중요한 자료가 될 것이다.

데이터마이닝의 자동 데이터 규칙 추출 방법론 개발 : 계층적 클러스터링 알고리듬과 러프 셋 이론을 중심으로 (Development of Automatic Rule Extraction Method in Data Mining : An Approach based on Hierarchical Clustering Algorithm and Rough Set Theory)

  • 오승준;박찬웅
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권6호
    • /
    • pp.135-142
    • /
    • 2009
  • 테이터 마이닝은 대용량의 데이터 셋을 분석하기 위하여 새로운 이론, 기법, 분석 툴을 제공하는 전산 지능분야의 새로운 영역중 하나이다. 데이터 마이닝의 주요 기법으로는 연관규칙 탐사, 분류, 클러스터링 등이 있다. 그러나 이들 기법을 기존 연구 방법들처럼 개별적으로 사용하는 것보다는 통합화하여 규칙들을 자동적으로 발견해내는 방법론이 필요하다. 이런 데이터 규칙 추출 방법론은 대량의 데이터들을 분석하여 성공적인 의사결정을 내리는데 도움을 줄 수 있기에 많은 분야에 이용될 수 있다. 본 논문에서는 계층적 클러스터링 알고리듬과 러프셋 이론을 이용하여 대량의 데이터로부터 의미 있는 규칙들을 발견해 내는 자동적인 규칙 추출 방법론을 제안한다. 또한 UCI KDD 아카이브에 포함되어 있는 데이터 셋을 이용하여 제안하는 방법에 대하여 실험을 수행하였으며, 실제 생성된 규칙들을 예시하였다. 이들 자동 생성된 규칙들은 효율적인 의사결정에 도움을 준다.

빅데이터 분석 도구 R 언어를 이용한 비정형 데이터 시각화 (Visualizing Unstructured Data using a Big Data Analytical Tool R Language)

  • 남수태;진금회;신성윤;진찬용
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.151-154
    • /
    • 2021
  • 빅데이터 분석은 데이터 저장소에 저장된 대용량 데이터 속에서 의미 있는 새로운 상관관계, 패턴, 추세를 발견하여 새로운 가치를 창출하는 과정이다. 또한 대부분의 빅데이터 분석 기술 방법들은 기존 통계학과 전산학에서 사용되던 데이터 마이닝, 기계 학습, 자연 언어 처리, 패턴 인식 등이 이에 해당된다. 그리고 빅데이터 분석 도구인 R언어를 이용하여 전-처리된 텍스트 데이터를 이용하여 다양한 시각화 함수를 통해 분석결과를 표현할 수 있다. 본 연구에서 사용된 데이터는 한국정보통신학회 학회지 논문 중에서 2021년 3월호 논문 21편을 대상으로 분석을 하였다. 최종 분석결과는 가장 많이 언급된 키워드는 "데이터"가 305회로 1위를 차지하였다. 따라서 이러한 분석결과를 바탕으로 연구의 한계와 이론적 실무적 시사점을 제시하고자 한다.

  • PDF

빅데이터 분석 도구 R 언어를 이용한 논문 데이터 시각화 (Visualizing Article Material using a Big Data Analytical Tool R Language)

  • 남수태;신성윤;진찬용
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.326-327
    • /
    • 2021
  • 최근 빅데이터 활용은 매우 다양한 산업 분야에서 광범위하게 관심을 가지고 있다. 빅데이터 분석은 데이터 저장소에 저장된 대용량 데이터 속에서 의미 있는 새로운 상관관계, 패턴, 추세를 발견하여 새로운 가치를 창출하는 과정이다. 또한 대부분의 빅데이터 분석 기술 방법들은 기존 통계학과 전산학에서 사용되던 데이터 마이닝, 기계 학습, 자연 언어 처리, 패턴 인식 등이 이에 해당된다. 그리고 빅데이터 분석 도구인 R언어를 이용하여 전-처리된 텍스트 데이터를 이용하여 다양한 시각화 함수를 통해 분석결과를 표현할 수 있다. 본 연구에서 사용된 데이터는 특정 학회지 논문 중에서 29편을 대상으로 분석을 하였다. 최종 분석결과는 가장 많이 언급된 키워드는 "연구"가 743회로 1위를 차지하였다. 따라서 이러한 분석결과를 바탕으로 연구의 한계와 이론적 실무적 시사점을 제시하고자 한다.

  • PDF

개념계층구조를 기반으로 하는 다치 삼원 데이터집합의 지식 추출 (Knowledge Mining from Many-valued Triadic Dataset based on Concept Hierarchy)

  • 황석형;정영애;황세웅
    • Journal of Platform Technology
    • /
    • 제12권3호
    • /
    • pp.3-15
    • /
    • 2024
  • 지식 마이닝은 다종다양한 대량의 데이터로부터 데이터 모델링, 정보추출 및 분석, 가시화, 결과 해석 등과 같은 다양한 기법들을 적용하여 데이터로부터 유용하고 가치 있는 지식을 찾아내는 연구 분야로서, 비즈니스, 의료, 과학 연구 등 다양한 영역에서 원시 데이터를 유용한 지식으로 변환하기 위한 중요한 역할을 수행한다. 본 논문에서는 형식개념분석기법을 확장하여 다종다양한 데이터로부터 지식발견과 데이터 마이닝을 수행하기 위한 분석기법을 제안한다. 분석대상 데이터의 다양한 형식과 구조를 표현하기 위한 제반 모델들(다치데이터 테이블, 삼원데이터테이블)과 데이터처리(이진화 및 평탄화) 및 개념계층구조 구축과 연관규칙 추출을 위한 알고리즘들을 정의하고, 공공오픈데이터를 대상으로 본 논문에서 제안한 기법을 적용한 실험을 수행하여 제안 기법의 유용성을 실증하였다.

  • PDF

온라인 연관관계 분석의 장바구니 기준에 대한 연구 (An Investigation on Expanding Co-occurrence Criteria in Association Rule Mining)

  • 김미성;김남규
    • CRM연구
    • /
    • 제4권2호
    • /
    • pp.19-29
    • /
    • 2011
  • 오프라인 쇼핑몰에 비해 온라인 쇼핑몰은 빠르게 접근이 가능하기 때문에 처음 구매의사를 생성하고 실제 구매가 이루어지기까지의 기간이 오프라인 쇼핑몰에 비해 매우 짧게 나타난다. 즉 오프라인 쇼핑몰의 경우 구매 희망물건을 바로 구매하기 보다는 몇 개의 물건들을 모두 모아서 구매하는 행태가 일반적이다. 하지만, 인터넷 쇼핑몰의 경우 단 하나의 물품만을 포함하고 있는 주문이 전체 주문의 절반이상을 차지한다. 이러한 차이는 온라인 쇼핑몰 거래데이터의 분석을 위해서는 데이터 마이닝 분석에서 사용되어 온 장바구니의 정의에 대한 확장이 필요함을 의미한다. 하지만 현재까지 온라인 데이터를 대상으로 한 장바구니 분석 연구는, 장바구니의 기준 즉 동시구매의 기준에 대한 명확한 근거나 합의 없이 연구자의 선택에 따라 서로 다른 기준으로 수행되어왔다. 따라서 본 연구에서는 온라인 쇼핑몰 분석에 적용되는 동시에 구매되는 물건들에 대한 기준을 고찰해보고 연구모형을 마련하고자 한다.

  • PDF

빅데이터 분석기법을 통한 성주(星州) 세종대왕자태실(世宗大王子胎室)의 인식 및 활용방안 (A Recognition and Application Plan of Placenta Chamber of King Sejong's Princes by Big Data Analytical Technique)

  • 임진강;박지환
    • 한국전통조경학회지
    • /
    • 제36권1호
    • /
    • pp.78-88
    • /
    • 2018
  • 연구는 세종대왕자태실의 문화적 가치에 따른 활용방안을 수립하기 위한 것으로 대중이 가지는 다양한 인식과 의견을 종합 분석하고자 SNS를 통하여 데이터를 수집하고 분석에 활용하였다. 수집기간은 2007년 06월 01일-2017년 06월 30일까지(약 10년 동안)이며, '태실, 성주태실, 세종대왕자태실' 키워드를 포함하고 있는 블로그, 카페, 지식IN에서 자료를 수집하였다. 그리고 빅데이터 분석 기법인 텍스트 마이닝 기법을 활용하여 분석하였으며 주요 분석 결과에 따라 태실의 활용 방안을 도출하였다. 그 결과 세종대왕, 왕자, 성주, 풍수, 문화, 보존, 축복 등의 주요 키워드를 도출하였고, 키워드 '세계', '유산', '문화유산'의 연관성과 '태실', '경상북도', '문화재'의 연관성이 높아 세계문화유산으로서의 태실의 가치를 확인할 수 있었다. 그리고 태실 주변의 시설 재정비 및 환경개선을 통해 방문객들이 자극을 느끼거나 기분전환 할 수 있도록 유도할 수 있는 요인이 필요하다고 판단된다.

소셜미디어 데이터 분석을 활용한 COVID-19 전후 박쥐의 인식변화 연구 (A Study on the Perception Change of Bats after COVID-19 by Social Media Data Analysis)

  • 이주경;김벼리;김선숙
    • 환경영향평가
    • /
    • 제31권5호
    • /
    • pp.310-320
    • /
    • 2022
  • 본 연구는 국내 최대 소셜 네트워크인 블로그 글을 대상으로 텍스트마이닝 및 네트워크 분석을 통해 COVID-19 발생 후 '박쥐'에 대한 대중들의 인식 변화를 파악하였다. 국내에서 COVID-19 발생전 2019년부터 2020년까지 9,241건의 네이버 블로그 글을 수집하였다. 수집된 자료는 파이썬(Python)과 NetMiner 4.3.2으로 분석하였고, 시기별로 도출된 키워드와 키워드 간 연관성을 통해 박쥐에 대한 대중들의 인식을 심층적으로 분석하였다. 분석결과, 2020년 박쥐 키워드의 출현 빈도는 2019년에 비해 25배 이상 증가하였고, 중심성 수치 또한 3배 이상 증가되었다. 네트워크 분석 결과, '박쥐'에 대한 인식은 COVID-19 발생전과 후 차이를 나타냈다. COVID-19 이전에 박쥐는 야생동물의 한 종(Species)으로 인식되는 경향성이높았던 반면, COVID-19 발생 초기인 2020년 상반기에는 전염병 및 건강 분야와 연관시켜 인간사회를 위협할 수 있는 존재로 강하게 인식하였고, 하반기에는 생태 및 문화 유형 비중이 높아지면서 박쥐에 대한 관심영역이 확장된 것을 확인하였다. 본 연구는 COVID-19 발생 이후 질병 숙주로서 박쥐의 잠재적인 영향에 대한 대중들의 관심과 인식 변화에 대한 정보를 제공함으로써 질병연구의 확장과 공중보건 관리, 미래감염병 대응을 위한 방향을 제시하였다.

유통업계 ESG 경영을 위한 블록체인 도입 탐색적 연구 (Exploratory Study on the Application of Blockchain for ESG Management in the Distribution Industry)

  • 최예지;변재욱;문지원;장항배
    • 지식경영연구
    • /
    • 제24권3호
    • /
    • pp.217-237
    • /
    • 2023
  • 최근 전 세계적으로 예상치 못한 거대한 경제적 리스크를 연속적으로 겪으면서, ESG 경영은 기업의 필수 생존전략으로 부상하였다. 특히 코로나 팬데믹으로 인한 공급망 전쟁은 리스크의 불확실성을 야기하였으며, 유통업계에서는 지속가능성을 확보할 수 있는 ESG 경영이 중요해지고 있다. 이러한 상황 속에서, 유통업계와 ESG 경영의 연결점을 강화하고 이를 효과적으로 관리하기 위해 블록체인 기술의 도입이 중요하게 여겨지고 있다. 유통업계에 블록체인 기술을 도입한 비즈니스 모델은 많은 연구를 통해 제시되고 있지만, 유통업의 ESG 경영에 블록체인을 적용하는 것에 대해 그 가능성 및 효과성을 입증한 연구는 아직까지 제한적이다. 따라서 본 연구에서는 국내 관련 연구를 대상으로 텍스트 마이닝 기법 중 하나인 연관어 분석을 통해 블록체인 기술과 ESG 경영이 유통업계에서 어떤 연결성을 가지고 있는지 분석하였다. 이를 통해 유통업계 ESG 경영의 블록체인 도입 가능성을 확인하고 이를 실현하기 위해 향후 연구에서 어떠한 방향으로 연구를 진행하여야 하는지 주요 키워드를 통해 연구 방향성을 제시하였다. 본 연구를 통해 도출된 결과는 향후 유통업계의 ESG 경영을 위한 블록체인 기반 비즈니스 모델 구축의 기초 연구로 활용될 것으로 기대한다.

데이터 마이닝 기법을 이용한 차량용 반도체의 불량률 예측 연구 (Prediction of field failure rate using data mining in the Automotive semiconductor)

  • 윤경식;정희운;박승범
    • 기술혁신연구
    • /
    • 제26권3호
    • /
    • pp.37-68
    • /
    • 2018
  • 본 논문에서는 차량용 반도체가 제품 출하 후 사용 환경에 따라 발생되는 불량률을 데이터 마이닝 기법을 이용하여 분석하였다. 20세기 이후 가장 보편적인 이동수단인 자동차는 전자 컨트롤 장치와 자동차용 반도체의 사용량이 급격히 증가하면서 매우 빠른 속도로 진화하고 있다. 자동차용 반도체는 차량용 전자 컨트롤 장치 중 핵심 부품으로 소비자들에게 안정성, 연료 사용의 효율성, 운전의 안정감을 제공하기 위해 사용되고 있다. 자동차용 반도체는 가솔린엔진, 디젤 엔진, 전기 모터를 컨트롤하는 기술, 헤드업 디스플레이, 차선 유지 시스템 등 많은 부분에 적용되고 있다. 이와 같이 반도체는 자동차를 구성하는 거의 모든 전자 컨트롤 장치에 적용되고 있으며 기계적인 장치를 단순히 조합한 이상의 효과를 만들어 내고 있다. 자동차용 반도체는 10년 이상의 자동차 사용 기간을 고려하여 높은 신뢰성, 내구성, 장기공급 등의 특성을 요구하고 있다. 자동차용 반도체의 신뢰성은 자동차의 안전성과 직접적으로 연결되기 때문이다. 반도체업계에서는 JEDEC과 AEC 등의 산업 표준 규격을 이용하여 자동차용 반도체의 신뢰성을 평가하고 있다. 또한 자동차 산업에서 표준으로 제시한 신뢰성 실험 방법과 그 결과를 이용하여 개발 초기 단계 및 제품 양산 초기단계에서 제품의 수명을 예측 하고 있다. 하지만 고객의 다양한 사용 조건 및 사용 시간 등 여러 변수들에 의해 발생되는 불량률을 예측하는 데는 한계가 있다. 이러한 한계점을 극복하기 위하여 학계와 산업계에서 많은 연구가 있어왔다. 그 중 데이터 마이닝 기법을 이용한 연구가 다수의 반도체 분야에서 진행되고 있지만, 아직 자동차용 반도체에 대한 적용 및 연구는 미비한 상태이다. 이러한 관점에서 본 연구는 데이터 마이닝 기법을 이용하여 반도체 조립(Assembly)과 패키지 테스트(Package test) 공정 중 발생 된 데이터들간의 연관성을 규명하고, 고객 불량 데이터를 이용하여 잠재 불량률 예측에 적합한 데이터 마이닝 기법을 검증하였다.