• 제목/요약/키워드: 연관 마이닝

검색결과 489건 처리시간 0.031초

실시간 검색어 연관 분석을 통한 핵심 이슈 선정 (Selecting a key issue through association analysis of realtime search words)

  • 정민영
    • 디지털융복합연구
    • /
    • 제13권12호
    • /
    • pp.161-169
    • /
    • 2015
  • 포털 사이트의 실시간 검색어는 현재 관심이 급상승하고 있는 이슈를 보여주기 위해 주로 검색횟수가 많은 순서에 따라 몇 초 간격으로 제공되고 있다. 그렇지만 너무 짧은 시간 내에 순위가 바뀌는 실시간 검색어의 특성 때문에 하루의 핵심 이슈를 비켜가는 문제가 발생한다. 본 논문에서 이러한 문제를 보완하기 위해 검색어들 사이의 연관 분석을 통하여 검색어들이 관련된 핵심 이슈를 도출하는 방법을 제안하고자 한다. 이를 위해 먼저 실시간 검색어를 순위와 상대적 관심도를 기반으로 점수화하여 집단별 기술통계를 통해 최상위 10개의 검색어를 도출한다. 그 다음으로 지지도와 신뢰도를 기반으로 연관 규칙을 추출하고 이를 가시화하는 그래프 결과를 바탕으로 핵심 이슈를 선정한다. 실험 결과는 단일 최상위 실시간 검색어보다 연관분석을 통해 높은 점수로 선정된 핵심 이슈가 더 큰 의미를 갖는다는 것을 보여준다.

실시간 연관규칙 탐사를 위한 능동적 후보항목 관리 모델 (An Active Candidate Set Management Model for Realtime Association Rule Discovery)

  • 신예호;류근호
    • 정보처리학회논문지D
    • /
    • 제9D권2호
    • /
    • pp.215-226
    • /
    • 2002
  • 미디어의 발달과 생활 패턴의 변화를 토대로 새롭게 나타나고 있는 다양한 판매 패턴들을 분석하는데 있어 단일한 분석 방법을 적용하는 것은 효과적이지 못하다. 특히 신선 식품이나 기념일 주변에서 집중적인 매출이 발생하는 품목들은 제한된 시간 내에 판매를 최대로 해야 하는 시간적 제약을 갖는다. 그러나 기존의 연관규칙 탐사 기법은 대규모 거래 데이터베이스로부터 반복적 스캔 연산을 통해 연관규칙 탐사를 수행하기 때문에 제한된 시간안에서 빈번히 필요로 하는 패턴을 분석하기에는 비효율적이기 때문이다. 따라서 이 논문에서는 시간 제약을 갖는 특수한 판매 패턴에 대한 실시간 연관규칙 탐사가 가능하도록 하기 위해 트리거와 저장 프로시져를 이용한 점진적 후보항목 관리 모델을 제안한다. 아울러 이 논문에서는 제안 모델의 구현 및 실험을 통해 그 성능 특성의 분석도 수행한다. 특히 이 논문에서 제안하는 방법은 이중 해쉬 기법을 이용함으로써 연산의 성능을 향상시킨다.

기후변화 및 식품 관련 뉴스기사의 텍스트 마이닝 (Text mining on internet-news regarding climate change and food)

  • 현윤진;김정선;정진욱;윤시몬;이문수
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권2호
    • /
    • pp.419-427
    • /
    • 2015
  • 기후변화와 식품 관련 정보가 유기적인 관련이 있음에도 불구하고, 사실상 현실에서는 사용자들이 직접 그 관련성에 대한 관심을 가지고, 해당 정보에 대한 접근이 용이하다고 말하기는 어렵다.본 연구는 실제 사용자들이 직접적으로 노출되는 인터넷 포털 사이트의 뉴스 기사에 대한 빈도분석 및 연관관계 분석을 통해 기후변화 및 식품 관련 정보가 어느 정도의 연관성을 가지고 얼마나 자주 나타나고 있는지에 대해 파악하였다. 또한 추출된 기후변화 및 식품 관련 뉴스를 대상으로 기후변화 용어 사전과 식품 관련 용어 사전을 활용하여 기후변화 관련 용어와 식품 관련 용어의 총 59개의 연관관계 규칙을 도출함으로써, 특정 기후변화 관련 용어가 어떠한 식품 관련 용어와 연관관계를 갖는지 파악하여, 추후 두 용어를 패키징해 제공할 수 있는 발판을 마련하였다.

연관 규칙을 이용한 적응적 고객 관계 관리 전략 (Adaptive Customer Relation Management Strategies using Association Rules)

  • 한기태;정경용;백준호;김종훈;류중경;이정현
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2008년도 춘계 종합학술대회 논문집
    • /
    • pp.84-86
    • /
    • 2008
  • 회사들이 정보를 효율적으로 이용할 수 있도록 제어하고 필터링하는 일을 도와주는 고객 관계 마케팅이 등장하였으며, 더 나아가 고객이 원하는 제품을 예측하고 추천해 주기 위해 데이터 마이닝을 적용하고 있다. 본 논문에서는 데이터 마이닝의 연관 규칙을 이용한 적응적 고객 관계 관리 전략을 제안하였다. 제안된 방법으로는 연관 규칙을 이용하여 후보 고객 집합으로 빈발 고객을 구성하고 연관 고객들의 규칙을 생성한다. 생성된 연관 규칙의 향상도에 따라서 하이퍼 그래프 분할을 이용하여 구매 고객들의 효율적인 특성을 분석한다. 따라서 고객들에 대한 교차 판매와 격상 판매의 전략들을 도출하게 된다.

  • PDF

전자상거래에서 연관규칙과 순차패턴을 이용한 온라인 마이닝 (On-Line Mining using Association Rules and Sequential Patterns in Electronic Commerce)

  • 김성학
    • 한국컴퓨터산업학회논문지
    • /
    • 제2권7호
    • /
    • pp.945-952
    • /
    • 2001
  • 인터넷 사용 인구의 증가로 전자상거래는 새로운 상거래 형태로 빠르게 발전하고 있으며, 대다수 인터넷 쇼핑몰들은 사용자에게 더 많은 정보와 편리한 사용자 인터페이스를 제공함으로써 보다 많은 고객을 확보하려고 노력하고 있다. 편리한 인터페이스 중의 하나는 상품을 추천해주는 서비스이며, 이를 위해서는 쇼핑몰에서의 구매정보, 행동 그리고 장바구니 등 사용자로부터 특정 행동패턴을 추출하고 분석하는 방법이 필요하다. 이러한 방법 중에서 상품간의 연관성 추출을 위하여 주로 연관규칙과 순차패턴이 이용되고 있는데, 대부분의 온라인 전자상거래에서는 사용자의 정보 또는 구매이력을 가지고 카테고리를 중심으로 수행하고 있다. 그러나 이는 단일한 구매패턴에 의한 연관성만을 나타낼 뿐이며, 상품 각각에 대한 연관성을 찾아보기 힘들다. 또한 단일 구매패턴은 계산 비용이 작기는 하지만 사용자의 구매패턴을 정확하게 반영하기 어렵다. 따라서 본 논문에서는 이러한 문제를 해결하기 위하여 카테고리 독립적이고 단일 항목간의 구조화를 통하여 항목간의 연계성을 갖는, 다중 구매패턴을 고려하는 마이닝 방법을 제안한다.

  • PDF

웹 페이지 방문 시간을 고려한 연관 규칙 탐색

  • 강형창;김익찬;김철수
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.263-269
    • /
    • 2005
  • 웹 사이트를 이용하는 사용자들은 정보를 편리하게 얻고자 한다. 웹 사이트 운영자들은 웹 사이트를 이용하는 사용자들에게 차별화된 서비스를 제공하기 위해 사용자에 따른 패턴 분석을 해야 한다. 연관 규칙은 패턴 발견을 위해 데이터 마이닝 기법중의 하나이다. 사용자에 따른 패턴을 찾아내면, 사용자에 따른 차별화된 서비스를 제공할 수 있다. 사용자에 따른 패턴은 연관 규칙 탐색으로 알 수 있고, 웹 페이지 방문 시간을 고려한 연관 규칙 탐색 결과는 차별화된 웹 구조 서비스 및 추천 서비스가 가능하다.

  • PDF

신경망에 기반한 개인화 기술 (A Personalization Technology Based on Neural Networks)

  • 김종수;도영아;류정우;김명원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.28-30
    • /
    • 2001
  • 현 인터넷상에서 취향에 맞는 항목(상품) 정보를 사용자에게 추천해 주는 개인화 기술은 대부분 특정 사용자와 유사한 선호도를 갖는 다른 사용자들의 특정 항목에 대한 선호도를 바탕으로 항목의 선호도를 추정하는 협력적 추천 기술을 적용하고 있다. 이중 최근접 이웃 방법은 적용하기가 용이한 반면 항목간의 가중치를 고려하지 못함으로써 추천의 정확도가 크게 떨어지는 문제점이 있다. 연관규칙 방법은 다른 항목에 대한 선호도 자료로부터 데이터 마이닝 기법을 적용하여 항목 선호에 대한 연관규칙을 추출하고 그 규칙을 사용하여 어떤 항목의 선호도를 추정한다. 따라서 항목들 간의 중요도가 연관규칙의 지지도나 신뢰도 등으로 나타난다고 할 수 있으나, 단순히 항목들간의 연관관계 즉 표면적인 연관관계에 의하여 선호도를 결정함으로써 항목들간의 어떤 내용적인 공통성 또는 어떤 상위개념에 의한 선호도가 고려되지 않음으로써 역시 정확도가 떨어지는 문제점이 있다. 본 논문에서는 추천의 정확도를 향상시키기 위한 신경망 추천 방법에 대해 분석하고, 내용기반 추천과 협력적 추천을 병합한 신경망 추천 방법을 제안한다. 또한, 다른 협력적 추천 방법과의 비교를 통하여 본 추천 방법의 장점과 성능의 우수함을 보인다.

  • PDF

단백질 모티프간 연관성 탐사 (Exploring Association Among Protein Motifs)

  • 이현숙;이도헌
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 춘계학술발표논문집 (상)
    • /
    • pp.47-50
    • /
    • 2002
  • 단백질 모티프(motif)란 유사한 기능을 가진 여러 단백질 서열에서 공통적으로 발견되는 패턴으로서 단백질의 기능을 예측하는 단서로 활용된다. 현재 Prosite, Pfam 등의 데이터베이스에서 정규식(regular expression), 가중치 행렬(weighted matrix). 은닉 마코프 모델(hidden Markov model)의 형태로 4천여종 이상의 모티프가 등록되어 있다. 하지만, 이러한 데이터베이스는 모티프와 단백질간의 일대일 관계만을 저장하고 있기 때문에, 모티프 간의 연관성을 파악하기는 어렵다. 본 논문에서는 모티프 간의 연관 관계를 연관 규칙의 형태로 발견하는 데이터 마이닝 기법을 제시한다. 아울러 HITS 데이터베이스로부터 입수한 단백질-모티프 데이터베이스에 본 기법을 적용함으로써 상당히 높은 연관성을 갖는 모티프 집단이 실제로 존재한다는 것을 밝힌다.

  • PDF

기준 확인 측도와 연관성 평가기준과의 관계 탐색 (Exploration of relationship between confirmation measures and association thresholds)

  • 박희창
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권4호
    • /
    • pp.835-845
    • /
    • 2013
  • 데이터 마이닝닝 기법들 중에서 연관성 규칙 마이닝 (association rule mining)은 대용량의 사건 발생 기록 데이터로부터 항목 간의 연관성을 측정하는 기법이다. 이 기법은 매우 방대한 양의 상품 또는 서비스 거래 기록 데이터로부터 항목들 간의 연관성을 측정하는 기법으로 제조업, 유통업, 보험업, 의료 및 교육 분야 등 많은 분야에 적용되고 있다. 의미 있는 연관성 규칙을 탐색하기 위한 흥미도 측도는 크게 객관적 흥미도 측도와 주관적 흥미도 측도, 그리고 의미론적 흥미도 측도로 분류할 수 있다. 이와는 별개로 기준 확인 또는 증거 지원과 관련된 측도들을 개발하기 위해 많은 시도가 있었으나 기준 확인 측도에 대한 연관성 평가 기준 조건 충족 여부나 기본적인 연관성 평가 측도인 지지도, 신뢰도, 그리고 향상도 등과의 관계는 아직 규명되지 않았다. 이에 본 논문에서는 가장 많이 활용되고 있는 비대칭적 기준 확인 측도에 대해 흥미도 측도의 기준에 대한 조건 충족 여부를 검토하는 동시에 기본적인 연관성 평가 측도들과의 관계를 수식을 통해 유도한 후, 예제를 통해 연관성 규칙의 관점에서 기준 확인 측도의 유용성을 살펴보았다. 그 결과, 본 논문에서 고려한 모든 기준 확인 측도들이 흥미도 측도의 기준에 대한 조건들을 모두 만족하였다. 또한 이들을 기본적인 연관성 평가 기준인 지지도, 신뢰도, 그리고 향상도와의 관계를 식을 통해 규명한 동시에 방향성과 행태적 해석 가능성을 예제를 통해 확인할 수 있었다. 특히 이들 측도 중에서 Kemeny와 Oppenheim이 제안한 측도와 Rips가 제안한 측도가 가장 바람직한 연관성 평가 기준으로 활용할 수 있다는 사실을 확인할 수 있었다.

교통사고 데이터의 마이닝을 위한 연관규칙 학습기법과 서브그룹 발견기법의 비교 (Comparison of Association Rule Learning and Subgroup Discovery for Mining Traffic Accident Data)

  • 김정민;류광렬
    • 지능정보연구
    • /
    • 제21권4호
    • /
    • pp.1-16
    • /
    • 2015
  • 교통사고의 원인을 규명하고 미래의 사고를 방지하기 위한 노력의 일환으로 데이터 마이닝 기법을 이용한 교통 데이터 분석의 연구가 이루어지고 있다. 하지만 기존의 교통 데이터를 이용한 마이닝 연구들은 학습된 결과를 사람이 이해하기 어려워 분석에 많은 노력이 필요하다는 문제가 있었다. 본 논문에서는 많은 속성들로 표현된 교통사고 데이터로부터 유용한 패턴을 발견하기 위해 규칙 학습 기반의 데이터 마이닝 기법인 연관규칙 학습기법과 서브그룹 발견기법을 적용하였다. 연관규칙 학습기법은 비지도 학습 기법의 하나로 데이터 내에서 동시에 많이 등장하는 아이템(item)들을 찾아 규칙의 형태로 가공해 주며, 서브그룹 발견기법은 사용자가 지정한 대상 속성이 결론부에 나타나는 규칙을 학습하는 지도학습 기반 기법으로 일반성과 흥미도가 높은 규칙을 학습한다. 규칙 학습 시 사용자의 의도를 반영하기 위해서는 하나 이상의 관심 속성들을 조합한 합성 속성을 만들어 규칙을 학습할 수 있다. 규칙이 도출되고 나면 후처리 과정을 통해 중복된 규칙을 제거하고 유사한 규칙을 일반화하여 규칙들을 더 단순하고 이해하기 쉬운 형태로 가공한다. 교통사고 데이터를 대상으로 두 기법을 적용한 결과 대상 속성을 지정하지 않고 연관규칙 학습기법을 적용하는 경우 사용자가 쉽게 알기 어려운 속성 사이의 숨겨진 관계를 발견할 수 있었으며, 대상 속성을 지정하여 연관규칙 학습기법과 서브그룹 발견기법을 적용하는 경우 파라미터 조정에 많은 노력을 기울여야 하는 연관규칙 학습기법에 비해 서브그룹 발견기법이 흥미로운 규칙들을 더 쉽게 찾을 수 있음을 확인하였다.