포털 사이트의 실시간 검색어는 현재 관심이 급상승하고 있는 이슈를 보여주기 위해 주로 검색횟수가 많은 순서에 따라 몇 초 간격으로 제공되고 있다. 그렇지만 너무 짧은 시간 내에 순위가 바뀌는 실시간 검색어의 특성 때문에 하루의 핵심 이슈를 비켜가는 문제가 발생한다. 본 논문에서 이러한 문제를 보완하기 위해 검색어들 사이의 연관 분석을 통하여 검색어들이 관련된 핵심 이슈를 도출하는 방법을 제안하고자 한다. 이를 위해 먼저 실시간 검색어를 순위와 상대적 관심도를 기반으로 점수화하여 집단별 기술통계를 통해 최상위 10개의 검색어를 도출한다. 그 다음으로 지지도와 신뢰도를 기반으로 연관 규칙을 추출하고 이를 가시화하는 그래프 결과를 바탕으로 핵심 이슈를 선정한다. 실험 결과는 단일 최상위 실시간 검색어보다 연관분석을 통해 높은 점수로 선정된 핵심 이슈가 더 큰 의미를 갖는다는 것을 보여준다.
미디어의 발달과 생활 패턴의 변화를 토대로 새롭게 나타나고 있는 다양한 판매 패턴들을 분석하는데 있어 단일한 분석 방법을 적용하는 것은 효과적이지 못하다. 특히 신선 식품이나 기념일 주변에서 집중적인 매출이 발생하는 품목들은 제한된 시간 내에 판매를 최대로 해야 하는 시간적 제약을 갖는다. 그러나 기존의 연관규칙 탐사 기법은 대규모 거래 데이터베이스로부터 반복적 스캔 연산을 통해 연관규칙 탐사를 수행하기 때문에 제한된 시간안에서 빈번히 필요로 하는 패턴을 분석하기에는 비효율적이기 때문이다. 따라서 이 논문에서는 시간 제약을 갖는 특수한 판매 패턴에 대한 실시간 연관규칙 탐사가 가능하도록 하기 위해 트리거와 저장 프로시져를 이용한 점진적 후보항목 관리 모델을 제안한다. 아울러 이 논문에서는 제안 모델의 구현 및 실험을 통해 그 성능 특성의 분석도 수행한다. 특히 이 논문에서 제안하는 방법은 이중 해쉬 기법을 이용함으로써 연산의 성능을 향상시킨다.
Journal of the Korean Data and Information Science Society
/
제26권2호
/
pp.419-427
/
2015
기후변화와 식품 관련 정보가 유기적인 관련이 있음에도 불구하고, 사실상 현실에서는 사용자들이 직접 그 관련성에 대한 관심을 가지고, 해당 정보에 대한 접근이 용이하다고 말하기는 어렵다.본 연구는 실제 사용자들이 직접적으로 노출되는 인터넷 포털 사이트의 뉴스 기사에 대한 빈도분석 및 연관관계 분석을 통해 기후변화 및 식품 관련 정보가 어느 정도의 연관성을 가지고 얼마나 자주 나타나고 있는지에 대해 파악하였다. 또한 추출된 기후변화 및 식품 관련 뉴스를 대상으로 기후변화 용어 사전과 식품 관련 용어 사전을 활용하여 기후변화 관련 용어와 식품 관련 용어의 총 59개의 연관관계 규칙을 도출함으로써, 특정 기후변화 관련 용어가 어떠한 식품 관련 용어와 연관관계를 갖는지 파악하여, 추후 두 용어를 패키징해 제공할 수 있는 발판을 마련하였다.
회사들이 정보를 효율적으로 이용할 수 있도록 제어하고 필터링하는 일을 도와주는 고객 관계 마케팅이 등장하였으며, 더 나아가 고객이 원하는 제품을 예측하고 추천해 주기 위해 데이터 마이닝을 적용하고 있다. 본 논문에서는 데이터 마이닝의 연관 규칙을 이용한 적응적 고객 관계 관리 전략을 제안하였다. 제안된 방법으로는 연관 규칙을 이용하여 후보 고객 집합으로 빈발 고객을 구성하고 연관 고객들의 규칙을 생성한다. 생성된 연관 규칙의 향상도에 따라서 하이퍼 그래프 분할을 이용하여 구매 고객들의 효율적인 특성을 분석한다. 따라서 고객들에 대한 교차 판매와 격상 판매의 전략들을 도출하게 된다.
인터넷 사용 인구의 증가로 전자상거래는 새로운 상거래 형태로 빠르게 발전하고 있으며, 대다수 인터넷 쇼핑몰들은 사용자에게 더 많은 정보와 편리한 사용자 인터페이스를 제공함으로써 보다 많은 고객을 확보하려고 노력하고 있다. 편리한 인터페이스 중의 하나는 상품을 추천해주는 서비스이며, 이를 위해서는 쇼핑몰에서의 구매정보, 행동 그리고 장바구니 등 사용자로부터 특정 행동패턴을 추출하고 분석하는 방법이 필요하다. 이러한 방법 중에서 상품간의 연관성 추출을 위하여 주로 연관규칙과 순차패턴이 이용되고 있는데, 대부분의 온라인 전자상거래에서는 사용자의 정보 또는 구매이력을 가지고 카테고리를 중심으로 수행하고 있다. 그러나 이는 단일한 구매패턴에 의한 연관성만을 나타낼 뿐이며, 상품 각각에 대한 연관성을 찾아보기 힘들다. 또한 단일 구매패턴은 계산 비용이 작기는 하지만 사용자의 구매패턴을 정확하게 반영하기 어렵다. 따라서 본 논문에서는 이러한 문제를 해결하기 위하여 카테고리 독립적이고 단일 항목간의 구조화를 통하여 항목간의 연계성을 갖는, 다중 구매패턴을 고려하는 마이닝 방법을 제안한다.
웹 사이트를 이용하는 사용자들은 정보를 편리하게 얻고자 한다. 웹 사이트 운영자들은 웹 사이트를 이용하는 사용자들에게 차별화된 서비스를 제공하기 위해 사용자에 따른 패턴 분석을 해야 한다. 연관 규칙은 패턴 발견을 위해 데이터 마이닝 기법중의 하나이다. 사용자에 따른 패턴을 찾아내면, 사용자에 따른 차별화된 서비스를 제공할 수 있다. 사용자에 따른 패턴은 연관 규칙 탐색으로 알 수 있고, 웹 페이지 방문 시간을 고려한 연관 규칙 탐색 결과는 차별화된 웹 구조 서비스 및 추천 서비스가 가능하다.
현 인터넷상에서 취향에 맞는 항목(상품) 정보를 사용자에게 추천해 주는 개인화 기술은 대부분 특정 사용자와 유사한 선호도를 갖는 다른 사용자들의 특정 항목에 대한 선호도를 바탕으로 항목의 선호도를 추정하는 협력적 추천 기술을 적용하고 있다. 이중 최근접 이웃 방법은 적용하기가 용이한 반면 항목간의 가중치를 고려하지 못함으로써 추천의 정확도가 크게 떨어지는 문제점이 있다. 연관규칙 방법은 다른 항목에 대한 선호도 자료로부터 데이터 마이닝 기법을 적용하여 항목 선호에 대한 연관규칙을 추출하고 그 규칙을 사용하여 어떤 항목의 선호도를 추정한다. 따라서 항목들 간의 중요도가 연관규칙의 지지도나 신뢰도 등으로 나타난다고 할 수 있으나, 단순히 항목들간의 연관관계 즉 표면적인 연관관계에 의하여 선호도를 결정함으로써 항목들간의 어떤 내용적인 공통성 또는 어떤 상위개념에 의한 선호도가 고려되지 않음으로써 역시 정확도가 떨어지는 문제점이 있다. 본 논문에서는 추천의 정확도를 향상시키기 위한 신경망 추천 방법에 대해 분석하고, 내용기반 추천과 협력적 추천을 병합한 신경망 추천 방법을 제안한다. 또한, 다른 협력적 추천 방법과의 비교를 통하여 본 추천 방법의 장점과 성능의 우수함을 보인다.
단백질 모티프(motif)란 유사한 기능을 가진 여러 단백질 서열에서 공통적으로 발견되는 패턴으로서 단백질의 기능을 예측하는 단서로 활용된다. 현재 Prosite, Pfam 등의 데이터베이스에서 정규식(regular expression), 가중치 행렬(weighted matrix). 은닉 마코프 모델(hidden Markov model)의 형태로 4천여종 이상의 모티프가 등록되어 있다. 하지만, 이러한 데이터베이스는 모티프와 단백질간의 일대일 관계만을 저장하고 있기 때문에, 모티프 간의 연관성을 파악하기는 어렵다. 본 논문에서는 모티프 간의 연관 관계를 연관 규칙의 형태로 발견하는 데이터 마이닝 기법을 제시한다. 아울러 HITS 데이터베이스로부터 입수한 단백질-모티프 데이터베이스에 본 기법을 적용함으로써 상당히 높은 연관성을 갖는 모티프 집단이 실제로 존재한다는 것을 밝힌다.
Journal of the Korean Data and Information Science Society
/
제24권4호
/
pp.835-845
/
2013
데이터 마이닝닝 기법들 중에서 연관성 규칙 마이닝 (association rule mining)은 대용량의 사건 발생 기록 데이터로부터 항목 간의 연관성을 측정하는 기법이다. 이 기법은 매우 방대한 양의 상품 또는 서비스 거래 기록 데이터로부터 항목들 간의 연관성을 측정하는 기법으로 제조업, 유통업, 보험업, 의료 및 교육 분야 등 많은 분야에 적용되고 있다. 의미 있는 연관성 규칙을 탐색하기 위한 흥미도 측도는 크게 객관적 흥미도 측도와 주관적 흥미도 측도, 그리고 의미론적 흥미도 측도로 분류할 수 있다. 이와는 별개로 기준 확인 또는 증거 지원과 관련된 측도들을 개발하기 위해 많은 시도가 있었으나 기준 확인 측도에 대한 연관성 평가 기준 조건 충족 여부나 기본적인 연관성 평가 측도인 지지도, 신뢰도, 그리고 향상도 등과의 관계는 아직 규명되지 않았다. 이에 본 논문에서는 가장 많이 활용되고 있는 비대칭적 기준 확인 측도에 대해 흥미도 측도의 기준에 대한 조건 충족 여부를 검토하는 동시에 기본적인 연관성 평가 측도들과의 관계를 수식을 통해 유도한 후, 예제를 통해 연관성 규칙의 관점에서 기준 확인 측도의 유용성을 살펴보았다. 그 결과, 본 논문에서 고려한 모든 기준 확인 측도들이 흥미도 측도의 기준에 대한 조건들을 모두 만족하였다. 또한 이들을 기본적인 연관성 평가 기준인 지지도, 신뢰도, 그리고 향상도와의 관계를 식을 통해 규명한 동시에 방향성과 행태적 해석 가능성을 예제를 통해 확인할 수 있었다. 특히 이들 측도 중에서 Kemeny와 Oppenheim이 제안한 측도와 Rips가 제안한 측도가 가장 바람직한 연관성 평가 기준으로 활용할 수 있다는 사실을 확인할 수 있었다.
교통사고의 원인을 규명하고 미래의 사고를 방지하기 위한 노력의 일환으로 데이터 마이닝 기법을 이용한 교통 데이터 분석의 연구가 이루어지고 있다. 하지만 기존의 교통 데이터를 이용한 마이닝 연구들은 학습된 결과를 사람이 이해하기 어려워 분석에 많은 노력이 필요하다는 문제가 있었다. 본 논문에서는 많은 속성들로 표현된 교통사고 데이터로부터 유용한 패턴을 발견하기 위해 규칙 학습 기반의 데이터 마이닝 기법인 연관규칙 학습기법과 서브그룹 발견기법을 적용하였다. 연관규칙 학습기법은 비지도 학습 기법의 하나로 데이터 내에서 동시에 많이 등장하는 아이템(item)들을 찾아 규칙의 형태로 가공해 주며, 서브그룹 발견기법은 사용자가 지정한 대상 속성이 결론부에 나타나는 규칙을 학습하는 지도학습 기반 기법으로 일반성과 흥미도가 높은 규칙을 학습한다. 규칙 학습 시 사용자의 의도를 반영하기 위해서는 하나 이상의 관심 속성들을 조합한 합성 속성을 만들어 규칙을 학습할 수 있다. 규칙이 도출되고 나면 후처리 과정을 통해 중복된 규칙을 제거하고 유사한 규칙을 일반화하여 규칙들을 더 단순하고 이해하기 쉬운 형태로 가공한다. 교통사고 데이터를 대상으로 두 기법을 적용한 결과 대상 속성을 지정하지 않고 연관규칙 학습기법을 적용하는 경우 사용자가 쉽게 알기 어려운 속성 사이의 숨겨진 관계를 발견할 수 있었으며, 대상 속성을 지정하여 연관규칙 학습기법과 서브그룹 발견기법을 적용하는 경우 파라미터 조정에 많은 노력을 기울여야 하는 연관규칙 학습기법에 비해 서브그룹 발견기법이 흥미로운 규칙들을 더 쉽게 찾을 수 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.