DOI QR코드

DOI QR Code

An Active Candidate Set Management Model for Realtime Association Rule Discovery

실시간 연관규칙 탐사를 위한 능동적 후보항목 관리 모델

  • Published : 2002.04.01

Abstract

Considering the rapid process of media's breakthrough and diverse patterns of consumptions's analysis, a uniform analysis might be much rooms to be desired for interpretation of new phenomena. In special, the products happening intensive sails on around an anniversary or fresh food have the restricted marketing hours. Moreover, traditional association rule discovery algorithms might not be appropriate for analysis of sales pattern given in a specific time because existing approaches require iterative scan operation to find association rule in large scale transaction databases. in this paper, we propose an incremental candidate set management model based on twin-hashing technique to find association rule in special sales pattern using database trigger and stored procedure. We also prove performance of the proposed model through implementation and experiment.

미디어의 발달과 생활 패턴의 변화를 토대로 새롭게 나타나고 있는 다양한 판매 패턴들을 분석하는데 있어 단일한 분석 방법을 적용하는 것은 효과적이지 못하다. 특히 신선 식품이나 기념일 주변에서 집중적인 매출이 발생하는 품목들은 제한된 시간 내에 판매를 최대로 해야 하는 시간적 제약을 갖는다. 그러나 기존의 연관규칙 탐사 기법은 대규모 거래 데이터베이스로부터 반복적 스캔 연산을 통해 연관규칙 탐사를 수행하기 때문에 제한된 시간안에서 빈번히 필요로 하는 패턴을 분석하기에는 비효율적이기 때문이다. 따라서 이 논문에서는 시간 제약을 갖는 특수한 판매 패턴에 대한 실시간 연관규칙 탐사가 가능하도록 하기 위해 트리거와 저장 프로시져를 이용한 점진적 후보항목 관리 모델을 제안한다. 아울러 이 논문에서는 제안 모델의 구현 및 실험을 통해 그 성능 특성의 분석도 수행한다. 특히 이 논문에서 제안하는 방법은 이중 해쉬 기법을 이용함으로써 연산의 성능을 향상시킨다.

Keywords

References

  1. R. Agrawal, R. Srikant, 'Fast Algorithms for Mining Association Rules,' Proc. of the 20th Int'l Conference on Very Large Databases, 1994
  2. R. Agrawal, K. Shim, 'Developing Tightly-Coupled Data Mining Applications on a Relational Database System,' Proc. of the 2nd Int'l Conference on Knowledge Discovery in Databases and Data Mining, Portland, Oregon, August, 1996
  3. S. Sarawagi, S. Thomas, R. Agrawal, 'Integrating association rule mining with databases: alternatives and implications,' Proc. of the ACM SIGMOD Int'l Conference on Management of Data, Seattle, Washington, June, 1998 https://doi.org/10.1145/276304.276335
  4. J. Han, Y. Fu, K. Koperski, W. Wang, and O. Zaiane, 'DMQL : A Data Mining Query Language for Relational Databases,' 1996 SIGMOD'96 Workshop. on Research Issues on Data Mining and Knowledge Discovery (DMKD'96), Montreal, Canada, June, 1996
  5. Jong Soo Park, Ming-Syan Chen, Philip S. Yu, 'An Effective Hash Based Algorithm for Mining Association Rules,' SIGMOD Conference, 1995 https://doi.org/10.1145/223784.223813
  6. D. Cheung, J. Han, V. Ng and C.Y. Wong, 'Maintenance of Discovered Association Rules in Large Databases : An Incremental Updating Technique,' Proc. of 1996 Int'l Conf. on Data Engineering (ICDE'96), New Orleans, Louisiana, USA, 1996 https://doi.org/10.1109/ICDE.1996.492094
  7. R. Agrawal, G. Psaila, 'Active Data Mining,' Proc. of the 1st Int'l Conference on Knowledge Discovery and Data Mining, Montreal, August, 1995
  8. J. Han, S. Nishio and H. Kawano, 'Knowledge Discovery in Object-Oriented and Active Databases,' F. Fuchi and T. Yokoi (eds.), Knowledge Building and Knowledge Sharing, Ohmsha, Ltd. and IOS Press, 1994
  9. Jennifer Widom, Stefano Ceri, 'Chapter 1 : Introduction to Active Database Systems,' Active Database Systems, Morgan Kaufmann Publishing Inc, 1996
  10. Norman W. Paton, Andrew Dinn, M. Howard Williams, 'Chapter 4 : Optimization,' Active Rules in Database Systems, Springer, 1999
  11. Umeshwar Dayal, Barbara T. Blaustein, Alejandro P. Buchmann, Upen S. Chakravarthy, M. Hsu, R. Ledin, Dennis R. McCarthy, Amon Rosenthal, Sunil K. Sarin, Michael J. Carey, Miron Livay, Rajiv Jauhari, 'The HiPAC Project : Combining Active Databases and Timing Constraints,' SIGMOD Record 17(1), 1988 https://doi.org/10.1145/44203.44208
  12. Eric N. Hanson, 'Rule Condition Testing and Action Execution in Ariel,' SIGMOD Conference, 1992 https://doi.org/10.1145/130283.130295
  13. J. S. Park, Y. H. Shin, K. W. Nam, K. H. Ryu. 'Incremental Condition Evaluation for ActiveTemporal Rule,' Journal of KISS, (8) 26(4), 1999
  14. ANSI X3H2-99-079/WG3 : YGJ-011 (ANSI/ISO Working Drft) Foundation(SQL/Foundation), March, 1999
  15. Spyros Potamianos, Michael Stonebraker, 'Chapter 2 : The POSTGRES Rule System,' Active Database Systems, Morgan Kaufmann Publishing Inc, 1996
  16. J. H. Whang, Y. H. Shin, K. H. Ryu, 'An Active Candidate Set Management Model on Association Rule Discovery using Database Trigger and Incremental Update Technique,' Journal of KISS, (B), 29(1), 2002
  17. Y. J Lee, S. B. Seo, K. H. Ryu, 'Discovering Temporal Relation Rules from Temporal Interval Data,' Journal of KISS, (B), 28(9), 2001
  18. J. S Song, Y. J. Lee, K. H. Ryu, 'Discovering Relationship rule from Interval Data,' to be submitted the ETRI Journal, 2001
  19. Oracle 8i Development Guide: PL/SQL, Oracle Press, 2000