• Title/Summary/Keyword: 연관 규칙 알고리즘

Search Result 200, Processing Time 0.024 seconds

A Study on Data Association-Rules Mining of Content-Based Multimedia (내용 기반의 멀티미디어 데이터 연관규칙 마이닝에 대한 연구)

  • Kim, Jin-Ok;Hwang, Dae-Jun
    • The KIPS Transactions:PartD
    • /
    • v.9D no.1
    • /
    • pp.57-64
    • /
    • 2002
  • Few studies have been systematically pursued on a multimedia data mining in despite of the overwhelming amounts of multimedia data by the development of computer capacity, storage technology and Internet. Based on the preliminary image processing and content-based image retrieval technology, this paper presents the methods for discovering association rules from recurrent items with spatial relationships in huge data repositories. Furthermore, multimedia mining algorithm is proposed to find implicit association rules among objects of which content-based descriptors such as color, texture, shape and etc. are recurrent and of which descriptors have spatial relationships. The algorithm with recurrent items in images shows high efficiency to find set of frequent items as compared to the Apriori algorithm. The multimedia association-rules algorithm is specially effective when the collection of images is homogeneous and it can be applied to many multimedia-related application fields.

Effective Dynamic Load Balancing for Association Rule Mining (병렬 연관규칙 마이닝을 위한 동적 부하 분산 설계 및 구현)

  • ;;;R.S. Ramakrishna
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04a
    • /
    • pp.655-657
    • /
    • 2002
  • 데이터 마이닝 기술 중 하나인 연관규칙 마이닝의 병렬 알고리즘들은 동형질의 병렬 컴퓨팅 시스템을 대상으로 하여 개발되었다. 그러나, 이러한 병렬 알고리즘들은 클러스터 시스템 또는 Network Of Workstation(NOW)과 같은 저가의 프로세서들로 구성된 집합적인 병렬 컴퓨팅 시스템에서는 부적당하다. 이는 이들 시스템이 다른 성능을 가진 프로세서로 구성되어 있거나 여러 사용자의 접근을 허용하는 등의 이형성을 가지기 때문이다. 결과적으로 이러한 환경을 고려하지 않은 기존의 병렬 연관규칙 알고리즘들은 전체 시스템의 성능을 활용하지 못하게 되어 성능저하를 피할 수 없다. 본 논문에서는 대표적인 병렬 연관규칙 알고리즘인 Data Distribution 알고리즘을 위만 효과적이고 확장성 있는 동적 부하분산 알고리즘의 설계와 구현을 다룬다.

  • PDF

Mining Association Rules with Time Intervals (연관 규칙과 시간 간격을 함께 탐색하는 알고리즘)

  • Shin, YoonJae;Lee, Ki Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.559-561
    • /
    • 2016
  • 로그 테이터 속에서 시간차를 두고 발생하는 트랜잭션 혹은 이벤트를 감지하는 일은 유통, 마케팅, 금융 등 다양한 분야에서 활용될 수 있다. 데이터베이스 분야에서 반복되는 패턴을 감지하는 알고리즘은 종종 소개되었지만, 데이터의 특성과 트랜잭션 간의 시간 간격을 고려한 연관 규칙 탐색 알고리즘 연구는 빈약했다. 본 논문에서는 정해진 구간에서 반복되는 패턴을 찾거나 주어진 아이템에 대한 주기를 찾는 등의 기존연구와 달리 전체 데이터베이스를 스캔하여 찾을 수 있는 연관 규칙과 그 연관 규칙이 반복되는 시간 간격을 함께 탐색하는 알고리즘을 제안한다. 또한, 제안하는 알고리즘의 처리시간에 대한 실험을 통해 성능을 확인한다.

A New Association Rule Mining based on Coverage and Exclusion for Network Intrusion Detection (네트워크 침입 탐지를 위한 Coverage와 Exclusion 기반의 새로운 연관 규칙 마이닝)

  • Tae Yeon Kim;KyungHyun Han;Seong Oun Hwang
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.77-87
    • /
    • 2023
  • Applying various association rule mining algorithms to the network intrusion detection task involves two critical issues: too large size of generated rule set which is hard to be utilized for IoT systems and hardness of control of false negative/positive rates. In this research, we propose an association rule mining algorithm based on the newly defined measures called coverage and exclusion. Coverage shows how frequently a pattern is discovered among the transactions of a class and exclusion does how frequently a pattern is not discovered in the transactions of the other classes. We compare our algorithm experimentally with the Apriori algorithm which is the most famous algorithm using the public dataset called KDDcup99. Compared to Apriori, the proposed algorithm reduces the resulting rule set size by up to 93.2 percent while keeping accuracy completely. The proposed algorithm also controls perfectly the false negative/positive rates of the generated rules by parameters. Therefore, network analysts can effectively apply the proposed association rule mining to the network intrusion detection task by solving two issues.

Frequent Closed Itemset Mining by Using a Space Compression and Efficient Search Technique (공간 압축 및 효율적 탐사 기법을 이용한 빈발 폐쇄 항목집합 마이닝)

  • 박귀정;한영우;이수원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.392-394
    • /
    • 2003
  • 연관 규칙 마이닝은 일반적으로 않은 빈발항목집합과 연관 규칙을 생성하며, 생성된 연관 규칙은 상호 포함관계에 있거나 중복되는 경우가 많다. 이는 효과적인 마이닝 뿐 아니라 마이닝의 활용 효용성을 떨어뜨린다. 이를 해결하기 위하여 연관 규칙 마이닝과 동일한 성능을 가지며 생성되는 규칙의 수를 줄일 수 있는 빈발 폐쇄 항목집합 마이닝이 제안되었다. 본 연구에서는 연관규칙 마이닝 방법 중 가장 우수한 성능을 가지는 ARCS 알고리즘을 개선한 빈발 폐쇄 항목집단 마이닝을 제안한다.

  • PDF

Processing Multi-Valued Attributes in Association Rules for Data Mining (데이터 마이닝을 위한 연관규칙의 다중 값 속성 처리방법)

  • 김산성;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.340-342
    • /
    • 2002
  • 다중 값이란 속성 값이 집합인 것을 말한다. 즉, 관계형 데이터베이스에서 자료 유형이 집합인 속성을 의미한다. 이러한 다중 값 속성 처리는 기존 데이터마이닝 기술 자체로는 처리한 수 없으며 후처리나 선처리 과정을 이용하여 처리하고 있다. 전처리나 후처리 과정을 통해 처리할 경우 수행과장에 있어 많은 시간이 소요되고 혹은 타당하지 않은 규칙이 생성되는 문제점을 가지고 있다. 특히 연관화 기법 특성상 분석하고자 할 항목이 증가할수록 연관성의 수가 지수(exponential)단위이기 때문에 이를 해결하는데는 상당한 어려움이 따르게 된다. 본 논문에서는 관계형 데이터베이스 테이블 구조에서 데이터 마이닝의 수행을 위한 전처리나 후처리의 과정을 고려하지 않음으로 위에서 언급된 문제점들을 해결하고자 한다. 특히 데이터 변환 작업 없이 정량적(Quantitative)연관 규칙과 연관 규칙(Market Basket Analysis)의 혼합 형태의 규칙을 생성할 수 있게끔 알고리즘을 확장하여 보다 효율적인 규칙이 생성될 수 있도록 한다. 마지막으로 Each Movie 데이터를 사용하여 확장한 알고리즘의 다중 값 속성 처리 방법의 효율성과 타탕성을 검증한다.

  • PDF

Document Classification using Weighted Associative Classifier (가중치가 부여된 연관 규칙을 이용한 문서 분류)

  • 김흥남;이기성;조근식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.154-156
    • /
    • 2003
  • 인터넷의 급속한 성장과 더불어 많은 정보와 데이터들을 인터넷을 통하여 얻을 수 있게 되었으며 많은 단체들이 문서들을 웹을 통하여 이용 가능하게 만들고 있다. 이에 따라 다양한 정보와 데이터를 효과적으로 분류하고 검색하는 문서 분류 (Document Classification)에 대한 알고리즘이 다양한 분야에서 널리 연구되어 왔으며 본 논문에서 초점을 두고 있는 전자 도서관 (Digital Library) 분야에서도 활발히 연구되어지고 있다. 하지만 기존의 전자 도서관의 문서 분류 알고리즘들은 문서들의 각 단락의 비중을 고려하지 않은 채 단어들의 발생 빈도에 초점을 두어 많은 잡음 단어 (Noise Term)를 포함하고 그로 인하여 분류 성능이 떨어졌다. 본 논문에서는 문서 단락의 중요도에 따라 다른 .가중치를 부여하여 단어 지지도 (Term Support)가 높은 단어들을 추출하고 그 단어들로 연관 규칙 (Association Rules)을 이용하여 분류 규칙을 생성하는 방법을 제안한다. 제안된 방법의 성능평가를 위해 문서 분류에 널리 쓰이는 나이브 베이지안 분류자 (Na$\square$ve Bayesian Classifier) 및 기존의 단순 연관 규칙 분류자 (Associative Classifier)와 비교 평가하였다. 그 결과, 각 가중치가 부여된 연관 규칙 분류 방법이 나이브 베이지안 분류 방법과 단순 연관 규칙 분류 방법보다 높은 성능을 보였다.

  • PDF

Association Rules Mining of Image Data using Spatial Factor (공간 분할 지수를 이용한 이미지 데이터 연관 규칙 마이닝)

  • Song ImYoung;Kim K.C.;Suk S.K.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.82-84
    • /
    • 2005
  • 본 논문에서는 기존의 멀티미디어 연관 규칙 알고리즘인 Max occur 알고리즘에서 추출한 빈발 항목 집합의 결과들에 대하여 빈발 항목 집합들끼리의 공간적인 연관 관계를 고려하기 위챈 공간 데이터 마이닝의 대표적인 공간 분할 방법인 그리드 셀 기반으로 곰간 분할 지수(spatial facotr)인 SF를 이용한 이미지 공간 연관 규칙 마이닝 방법을 제시한다. 또한 최소 공간 지지도를 적용하여 이미지 데이터에서 반복적으로 발생하는 항목과 항목간의 공간 관계를 통해 이미지 연관 규칙을 마이닝 하는데 보다 유효한 알고리즘을 제안한다.

  • PDF

Algorithm mining Association Rules by considering Weight Support (중요지지도를 고려한 연관규칙 탐사 알고리즘)

  • Kim, Keun-Hyung;Whang, Byung-Woong;Kim, Min-Chul
    • The KIPS Transactions:PartD
    • /
    • v.11D no.3
    • /
    • pp.545-552
    • /
    • 2004
  • Association rules mining, which is one of data mining technologies, searches data among which are frequent and related to each other in database. But, although the data are not of frequent and rare in database, they have the enough worth of business information if the data ares important and strongly related to each other, In this paper, we propose the algorithm discovering association rules that consist of data, which are rare but, important and strongly related to each other in database. The proposed algorithm was evaluated through simulation. We found that the proposed algorithm discovered efficiently association rules among data, which are not frequent but, important.

An Effective Reduction of Association Rules using a T-Algorithm (T-알고리즘을 이용한 연관규칙의 효과적인 감축)

  • Park, Jin-Hee;Chung, Hwan-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.285-290
    • /
    • 2009
  • An association rule mining has been studied to find hidden data pattern in data mining. A realization of fast processing method have became a big issue because it treated a great number of transaction data. The time which is derived by association rule finding method geometrically increase according to a number of item included data. Accordingly, the process to reduce the number of rules is necessarily needed. We propose the T-algorithm that is efficient rule reduction algorithm. The T-algorithm can reduce effectively the number of association rules. Because that the T-algorithm compares transaction data item with binary format. And improves a support and a confidence between items. The performance of the proposed T-algorithm is evaluated from a simulation.