Abstract
An association rule mining has been studied to find hidden data pattern in data mining. A realization of fast processing method have became a big issue because it treated a great number of transaction data. The time which is derived by association rule finding method geometrically increase according to a number of item included data. Accordingly, the process to reduce the number of rules is necessarily needed. We propose the T-algorithm that is efficient rule reduction algorithm. The T-algorithm can reduce effectively the number of association rules. Because that the T-algorithm compares transaction data item with binary format. And improves a support and a confidence between items. The performance of the proposed T-algorithm is evaluated from a simulation.
데이터에 숨겨진 패턴을 탐색하는 데이터마이닝에서 가장 많은 연구가 이루어진 분야가 연관규칙 마이닝이다. 연관규칙 마이닝에서는 방대한 수의 트랜잭션 데이터를 다루게 되므로 고속처리 방식의 실현이 중요한 과제가 되고 있다. 그리고 연관규칙 탐사기법에서 규칙을 도출하는데 소요되는 시간은 데이터에 포함되어 있는 항목의 수에 비례하여 기하급수적으로 늘어나기 때문에 규칙의 수를 줄이는 과정이 필연적으로 요구된다. 본 논문에서는 트랜잭션 데이터 항목들을 이진형식으로 비교하여 연관성 규칙의 수를 효과적으로 감축할 수 있고 항목간의 지지도와 신뢰도를 함께 향상 시킬 수 있는 T-알고리즘을 제안하고 시뮬래이션을 통하여 확인하였다.