• 제목/요약/키워드: 연관정보

검색결과 3,818건 처리시간 0.033초

GML데이터에서 지역적 연관규칙 탐색 기법 (A Local Association Rule Search Method from GML Data)

  • 홍성한;황병연
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2006년도 GIS/RS 공동춘계학술대회
    • /
    • pp.37-42
    • /
    • 2006
  • GIS분야에 대한 다양한 연구가 진행됨에 따라 그 활용에 대한 관심도 확대되고 있다. Open GIS Consortium에서는 GML(Geography Markup Language)을 개발하여 이를 GIS 응용분야에 활용하고자 하는 연구가 활발히 진행되고 있다. GML데이터에서 의미 있는 정보를 추출하기 위해서는 데이터 마이닝 기법 활용이 필수적이다 최근에 데이터마이닝 기법 중 연관규칙을 이용한 탐색 방법이 제안되었다. 그러나 이 방법은 전체 데이터를 대상으로 의미 있는 정보를 탐색 하므로, 데이터 내에 포함되어 있는 부분 속성인 지리 공간적 연관성을 탐색하는데 한계를 가지고 있다. 따라서 녈 연구에서는 GML데이터에서 부분적 속성을 고려한 지역적 연관규칙 탐색 기법을 제안한다.

  • PDF

연관마이닝 기법을 이용한 침입 시나리오 탐지를 위한 상태전이 알고리즘 (State Transition Algorithm for Penetration Scenarios Detection using Association Mining Technique)

  • 김창수;황현숙
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 춘계종합학술대회
    • /
    • pp.720-723
    • /
    • 2001
  • 현재 인터넷 환경에서 크래킹은 보편화되어 있다. 이러한 크래킹을 탐지하거나 방어하기 위한 기법들은 대부분 기존의 불법 침입 유형을 분석하여 대응 알고리즘을 개발하는 것이 대부분이다. 현재 알려진 침입 탐지 기법은 비정상 탐지(Anomaly Detection)와 오용 탐지(Misuse Detection)로 분류할 수 있는데, 전자는 통계적 방법, 특징 추출 등을 이용하며, 후자는 조건부 화률, 전문가 시스템, 상태 전이 분석, 패턴 매칭 둥을 적용한다. 본 연구에서는 상태전이 기반의 연관 마이닝 기법을 이용한 침입 시나리오 탐지 알고리즘을 제안한다. 이를 위해 본 연구에서는 의사결정지원시스템에서 많이 적용한 연관 마이닝 기법을 여러 가지 불법 침입과 연관된 상태 정보를 분석할 수 있는 수정된 상태전이 알고리즘을 제시한다.

  • PDF

고속연관규칙을 이용한 문맥광고에서의 콘텐츠 추천 (Content Recommendation Using High-Speed Association Rule Generation for Contextual Advertisement)

  • 김성민;이성진;이수원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (B)
    • /
    • pp.362-365
    • /
    • 2006
  • 인터넷 사용자가 급증함에 따라 온톨로지를 이용한 지능형 웹이나 인터넷 사용자에게 개인 맞춤형 서비스를 제공하기 위한 다양한 연구가 진행되고 있다. 대표적인 예로 문맥광고는 인터넷 사용자들이 뉴스나 커뮤니티 사이트에서 콘텐츠를 조회하고, 해당 콘텐츠와 일치하거나 관련성이 높은 제품 또는 서비스 정보를 제공하는 광고기법이다. 그러나 문맥 광고는 사용자에게 다양한 콘텐츠 및 사이트 추천 서비스를 제공하지 못하고 있다. 따라서 다양한 콘텐츠 및 사이트 추천 서비스를 제공하기 위해 본 논문에서는 사용자가 조회한 콘텐츠의 내용을 대표할 수 있는 중요 키워드를 선정하고, 콘텐츠 내에서 추출된 키워드간의 연관성을 분석하여 관련 콘텐츠 및 사이트를 추천하는 방법에 대해 제안한다. 또한 연관키워드리스트 생성방법을 고속연관규칙을 이용하여 처리속도를 줄이고, 사용자가 선호할 만한 다양한 콘텐츠와 관련된 사이트를 제공하는 방법에 대해 제안한다.

  • PDF

미디어간 상호 연관성을 이용한 멀티미디어 문서 검색 시스템의 설계 (Design of Multimedia Document Retrieval System Using Relations between Media)

  • 이성환;유채곤;이원호;황치정
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (1)
    • /
    • pp.274-276
    • /
    • 1998
  • 많은 분야에서 정보를 효과적으로 전달하기 위한 수단으로 멀티미디어가 많이 사용되고 있다. 이에 멀티미디어 문서를 효율적으로 저장, 검색, 표현하기 위한 기법에 대한 연구가 필요하다. 멀티미디어 문서 내에 사용되는 audio, video, image, text와 같은 여러 미디어들은 문서 내에서 시.공간적 관계뿐 아니라 내용상의 연관성을 갖게 된다. 본 논문에서는 멀티미디어 문서에 사용되는 미디어들의 특징 및 연관성을 추출해 내고, 각 미디어들을 효율적으로 관리하기 위하여 미디어 특성에 맞는 세크멘테이션 기법을 이용하고 이들에 대한 내용상의 연관성을 고려하여 저장(store), 검색(retrieve), 표현(present)하기위한 시스템을 설계 하였다.

사용자 군집을 이용한 개인화 된 웹 페이지 추천 (The personalized web page using the Users clustering method)

  • 이은경;이기현;조근식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.241-243
    • /
    • 2002
  • 기존의 웹 로그를 이용한 추천 System에서의 추천 문서 집합은 웹 페이지의 연관성과 웹 문서 사이의 거리를 이용하여 사용자들에게 추천 문서 집합을 제공해 주는 방식을 사용하였다. 이 방법에 의하면 추천 폐이지로 제공되는 페이지는 사용자별 연관성이 고려되지 않으므로 모든 사용자들이 웹 페이지의 연관성안을 이용한 폐이지를 추천 받는다. 따라서 처음 웹사이트를 방문한 새로운 사용자들에게는 추천해주는 폐이지는 사용자가 보고 있는 웹 페이지의 연관성에 의한 웹 페이지만을 추천 받게 되므로 생각하지 못했던 폐이지나 비슷한 취향을 가진 사용자들이 방문을 했던 페이지에 대해서는 추천 받지 못한다는 문제점을 가지고 있다. 따라서 본 논문에서는 동일한 폐이지를 방문한 사용자별로 클러스터링 하여 같은 그룹에 속한 사용자들의 브라우징 패턴 정보를 발견, 분석화 하여 DB에 저장하였으며, 새로운 사용자에 대해서 웹 페이지 추천 집합을 제공하였다.

  • PDF

과학기술 문헌에 나타난 시소러스의 연관관계 유형에 관한 연구 (The type of associative relationships of Thesaurus described in literature of science and technology)

  • 송유화;최호섭
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2011년도 제23회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.117-122
    • /
    • 2011
  • 시소러스의 연관관계는 유형의 세분화에 관한 원칙과 방법론의 부재로 시소러스를 구축하는 기관에서 개별적인 분류를 사용하고 있다. 분류에 적용되는 패싯지시어 모형에 관한 연구는 계속 되고 있지만 그 타당성을 뒷받침 할 실증적 사례연구는 찾아볼 수 없다. 본 연구에서는 Inspec에서 구축한 시소러스 중에 일정 기준으로 선정한 우선어와 관련어를 대상으로 IEL에서 제공하는 문헌에서 두 용어가 동시에 출현하는 문장을 찾아 그 연관관계 모형을 제안한다.

  • PDF

멀티미디어 데이터의 다차원 연관규칙 마이닝 (Multi-Dimensional Association Rule Mining in Multimedia Data)

  • 김진옥;황대준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 추계학술발표논문집 (상)
    • /
    • pp.233-236
    • /
    • 2001
  • 멀티미디어 데이터의 증가와 마이닝 기술의 발전으로 인해 멀티미디어 마이닝에 대한 관심이 증가하고 있다. 본 논문에서는 특성국지화를 이용한 내용기반의 정보검색 기술과 다차원 데이터큐브 구축기술을 통해 멀티미디어 데이터에서 연관규칙을 찾아내는 멀티미디어 데이터마이닝 시스템 프로토타입을 제안한다. 특히 멀티미디어 데이터의 칼라, 질감 등 거시적인 이미지 성분 대신 이미지의 영역성과 유사성을 이용한 특성국지화방법을 이용하여 이미지를 분할함으로써 방대한 데이타에서 효과적인 내용기반의 정의 검색을 시행하고 검색한 벡터를 메타데이타로 한 데이스베이스를 구축한다. 그리고 데이터베이스에서 데이터간 연관규칙을 찾아내어 지식을 마이닝하는데 효과적인 다차원 데이터큐브를 구축하고 여기에 연관규칙 검색 알고리즘을 적용한다.

  • PDF

전자상거래 머천트 시스템에서의 원투원 마케팅을 위한 데이터마이닝 시스템의 설계 및 구현 (Design and Implementation of A Data Mining System for One-to-One Marketing in EC Merchant Systems)

  • 김종달;홍정희;김성민;남도원;이동하;김성훈;이전영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (1)
    • /
    • pp.117-119
    • /
    • 1999
  • 전자상거래에서 판매 실적을 높이기 위한 효과적인 방법의 하나는 사용자에 따라 개별화된 정보의 제공, 즉 원투원 마케팅의 개념을 도입하는 것이다. 이를 위해서는 사용자의 구매 성향이나 사용자의 특성에 대한 지식베이스가 있어야 한다. 이러한 지식베이스로 데이터마이닝 기법중의 하나인 연관규칙을 도입하였다. 본 논문에서는 연관규칙을 기본 연산으로 하는 데이터마이닝 시스템의 설계와 구현을 기술하였다. 사용자와 제품간의 연관규칙을 추출하여 동적으로 제공되는 웹 문서를 생성하는데 필요한 지식베이스를 구축하였다. 또한 구축된 데이터마이닝 시스템은 연관규칙 탐사 엔진과 개념 계층 관리기로 구성되어 있으며, 대용량의 데이터를 다루기 위해 기존의 방법과는 다른 파일을 기반으로 한 빈번항목집합 인덱싱 기법을 제시하였다.

  • PDF

그래프 마이닝을 이용한 뉴스 데이터 분석 기법 (News Data Analysis Technique using Graph Mining)

  • 이창주;박기성;한용구;이영구
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 춘계학술발표대회
    • /
    • pp.730-733
    • /
    • 2015
  • 대용량의 인터넷 뉴스 데이터로부터 유용한 정보를 찾기 위해 연관 키워드, 핫 키워드 분석과 같은 다양한 분석 기술들이 연구되고 있다. 기존의 토픽 모델 기반의 기법은 키워드들간의 연관성을 제대로 표현하지 못하여 마이닝한 연관 키워드와 핫 키워드의 정확도가 낮은 문제점이 있다. 최근, 뉴스 데이터를 뉴스 내의 단어를 버텍스로, 같은 문장내의 단어들을 에지로 연결하는 그래프 기반의 모델링기법이 연구되었다. 이러한 뉴스 그래프 DB에서 그래프 마이닝 기술을 적용하면 연관 키워드, 핫 키워드를 마이닝 할 수 있다. 본 논문은 그래프 마이닝 기술 기반의 효과적인 뉴스 데이터 분석 기술을 제안한다. 실제 뉴스 데이터를 통해 마이닝한 유용한 뉴스 그래프 패턴들을 보이고 뉴스 데이터 분석에 효과적으로 활용될 수 있음을 보인다.

실시간 트위터 분석을 통한 트렌드 및 연관키워드 추출 (Trend and related keyword extraction based on real-time Twitter analysis)

  • 김대용;김대훈;황인준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.1710-1712
    • /
    • 2012
  • 최근 Twitter를 비롯한 소셜 네트워크 서비스의 급속한 확산으로 인해, 많은 수의 SNS 메시지가 실시간으로 생성되고 있다. 이러한 SNS상에서의 단문 글들을 실시간으로 분석하여 최신의 트렌드를 추출해 낼 수 있다면, 사용자에게 유용한 정보를 제공하는 것이 가능하다. 본 논문에서는 다량의 Tweet글들에 대한 실시간 분석을 바탕으로 트렌드를 추출하고 연관된 키워드를 제공하는 기법을 제안한다. 제안하는 기법은 실시간으로 생성되는 Tweet내에서 영어의 언어적 특성을 활용하여 최근 이슈화된 트렌드 키워드를 추출해낸다. 또한, Tweet 내에서 각 트렌드 키워드간 관계를 분석하여 연관 키워드를 제공하며, 동시에 Wikipedia와 Google에서의 검색을 통하여 다른 형태의 연관 키워드도 추출한다. 이 모든 과정은 제안된 트렌드 추출 알고리즘을 통해 실시간으로 제공된다. 제안된 기법을 바탕으로 시스템을 구현하고 다양한 실험을 통하여 키워드의 유효성 및 처리 속도 면에서 시스템의 성능을 평가한다.