최근 공간 정보들을 효과적으로 이용할 수 있는 기술에 대한 연구가 활발하게 이루어지고 있다. 효율적인 지식 탐사를 위해 다양한 기존의 데이터 마이닝 방법들이 확장되어 공간 데이터 마이닝에 사용되고 있다. 그러나 기존의 공간 연관 규칙 탐사 시스템들은 프레디킷 간의 연산을 통해 규칙을 발견함에 따라 질의 결과에 다양한 비공간 속성들을 반영하지 못하는 문제점을 가지고 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 공간 데이터베이스에서 사용되는 질의를 확장하고, 위상정보에 따른 데이터를 구성한 후 비공간 객체 속성간의 연관 규칙을 발견하는 시스템을 제안한다. 특히 지리 정보 시스템에 적용 가능한 모델을 구현하였다. 이렇게 구현된 시스템은 사용 중인 공간 데이터베이스를 확장하므로 이식성이 뛰어나고, 공간 속성뿐만 아니라 다양한 비공간 속성을 고려함으로써 좀 더 실생활에 유용한 공간 연관 규칙을 발견할 수 있다.
목적: 본 논문에서는 대한민국 성인의 라이프스타일 위험요인과 복합만성질환간의 연관성 규칙을 탐색하여 보건교육프로그램에 필요한 방향성과 기초정보를 제공하는데 목적을 둔다. 방법: 제8기 국민건강영양조사 중 2019년부터 2020년까지 만 19세 이상 성인 7,609명을 대상으로 하였으며, 6개의 라이프스타일 위험요인과 11가지 이환질환에 대하여 R과 R 스튜디오를 이용하여 연관규칙마이닝을 수행하였다. 결과: 본 연구 결과를 통하여 연관규칙마이닝과 같은 데이터마이닝 기법을 통해 생활 습관 위험 요인의 중요성과 여러 만성 질환의 역할을 보여줬다는 점에서 의미가 있다. 결론: 상기 결과를 통하여 신체 활동 부족을 해결하기 위한 운동 프로그램, 부적절한 체중을 해결하기 위한 식이 중재, 부적절한 수면을 해결하기 위한 정신건강 교육프로그램과 같은 선택적이고 집중적인 건강교육 프로그램에 대한 개발의 필요성이 요구된다.
웹 개인화 기술의 발달은 많은 업체들이 기존 고객의 유지와 신규 고객의 확보를 위한 수단을 제공하였다. 현재의 개인화 기술은 크게 내용 기반 그리고 협력적 정보 여과 방식에 기반한 기술로 나뉘어질 수 있다. 내용 기반 정보 여과 방식에 기반한 개인화 기술은 멀티미디어 정보로 표현된 대부분의 웹 오브젝트(페이지, 이미지, 동영상, 사운드, 상품 등)에는 적용하기 어렵고, 협력적 정보 여과방식은 Cold Start Problem과 단일 도메인내에서의 개인화 서비스만이 가능하다는 문제점이 있다. 본 논문에서는 협력적 정보 여과 방식과 데이터 마이닝 기술 중의 연관 규칙 생성 방법을 혼합한 웹 개인화 시스템을 제안한다. 다양한 멀티미디어 형태로 표현되는 웹 오브젝트의 내용 분석이 어려우므로, 각각의 오브젝트를 하나의 아이템으로 인식하고 개인화 서비스를 시도하는 협력적 정보 여과 방식을 채택하였다. 협력적 정보 여과의 결과로 발견된 도메인별 유사 사용자의 웹 오브젝트 사용 정보를 연관 규칙 생성 알고리즘에 적용하여 오브젝트간의 연관성을 발견한다. 발견된 오브젝트간의 연관성은 서로 다른 정보 도메인의 오브젝트가 현재 사용자에게 흥미있는 것인가를 예측할 수 있는 자료로서 사용될 수 있다. 협력적 정보 여과 방식에 의해 생성된 오브젝트의 선호도값과 오브젝트 연관성 정보를 비교하여 사용자에게 개인화된 웹 서비스를 제공한다.
Journal of the Korean Data and Information Science Society
/
제21권5호
/
pp.891-899
/
2010
연관성 규칙은 방대한 양의 데이터베이스 속에 있는 각 항목들 간의 관련성을 수치화함으로써 두개 이상의 항목간의 관련성을 나타내는 기법으로 데이터 마이닝 분야에서 가장 많이 활용되고 있다. 의미 있는 연관성 규칙을 탐색하기 위한 가장 기본적인 평가기준에는 지지도, 신뢰도, 향상도 등이 있으며, 이들을 이용하여 연관성 규칙을 생성하게 된다. 이 때 사용되는 향상도는 그 값의 범위가 지지도나 신뢰도와는 다르므로 지지도나 신뢰도의 범위를 동일하도록 하기 위해 표준화할 필요가 있으며, 지지도와 신뢰도도 하나의 후항변수에 대해 여러 개의 전항변수들이 있는 경우 이들 중 어느 것이 후항변수와 가장 연관성이 있는지를 객관적으로 비교하기 위해서도 표준화가 필요하다. 본 논문에서는 각 항목집합의 주변 발생확률을 고려하여 객관적이고도 정확한 연관성 정도를 파악하기 위해 연관성 평가기준을 표준화하는 방안에 대해 연구하고자 한다. 또한 흥미도 측도의 세 가지 조건의 충족 여부를 점검해 본 후, 구체적인 예제를 통하여 기존의 연관성 평가기준과 표준화된 연관성 평가기준을 비교 분석하고자 한다.
Journal of the Korean Data and Information Science Society
/
제24권6호
/
pp.1189-1197
/
2013
연관성 규칙 마이닝은 지지도, 신뢰도, 향상도 등의 흥미도 측도를 기반으로 하여 대용량 데이터베이스를 구성하고 있는 항목들 간의 관련성을 찾아내는 기법이다. 이 기법은 기업의 의사결정 문제, 유통업에서의 교차판매, 고객관리 등 현업에서 많이 활용되고는 있으나, 이러한 기본적인 연관성 평가기준만으로는 두 항목 간의 인과관계를 설명할 수 없다. 본 논문에서는 이러한 문제를 해결하기 위해 인과적 연관성 규칙을 제안하는 동시에, 고려하는 평가 기준들이 흥미도 측도의 조건을 충족하는지의 여부를 점검하였다. 본 논문에서 제안한 인과적 향상도는 세 가지 조건 모두를 만족하는 것으로 입증되었다. 인과적 지지도와 인과적 신뢰도는 동시 발생 확률의 값에 따라 단조 증가하는 조건과 각 항목의 주변 확률의 값에 따라 단조 감소하는 조건은 만족하였다. 반면에 두 항목이 독립이면 연관성 평가기준의 값이 1이 되는 조건에 대해서는 기존의 지지도와 신뢰도와 같이 이 조건이 충족되지 않았다. 또한 예제를 통해 기존의 연관성 평가 기준과 인과적 연관성 평가 기준을 비교해 본 결과, 기존의 평가측도인 지지도와 신뢰도를 기준으로 연관성 규칙 생성 여부를 판단했을 때 탈락되는 규칙도 인과적 평가 기준인 인과적 지지도와 인과적 신뢰도를 이용하여 판단하게 되면 연관성 규칙으로 채택할 수 있다는 사실을 발견하였다.
Journal of the Korean Data and Information Science Society
/
제22권2호
/
pp.179-188
/
2011
연관성 규칙은 방대한 데이터베이스에서 항목간의 관계를 명확히 수치화 함으로써 그들간의 관련성을 표시해주는 기법으로 데이터 마이닝 기법들 중에서 가장 많이 활용되고 있다. 어느 항목이 발생하면 다른 항목도 발생한다는 규칙을 발견하기 위한 기법이 연관성 규칙이라면 음의 연관성 규칙 마이닝은 어느 항목이 발생하면 다른 항목도 발생하지 않는다는 규칙을 찾아내는 기법이다. 기존의 연관성 규칙에 음의 연관성 규칙을 추가하게 되면 어떤 제품을 판매하기 위해서는 그 제품만 마케팅 하는 것 뿐 만 아니라 더 나아가 그 제품이 아닌 어느 제품을 마케팅 하는 것이 필요한지를 판단할 수 있다. 본 논문에서는 음의 연관성 규칙의 단점을 보완할 수 있는 음의 순수 연관성 규칙의 측도들을 제시하고 흥미도 측도가 가져야 할 조건들을 조사하였으며, 예제 데이터를 활용하여 음의 순수 연관성 규칙의 유용성에 대해 살펴보았다.
제안한 ANIDS(Advanced Network based IDS)는 네트워크 패킷을 수집하여 연관규칙 마이닝 기법을 이용하여 패킷의 연관성을 분석하고, 연관성이 높은 패킷을 이용해 패턴 그래프를 생성한 후, 생성된 패턴 그래프를 이용해 침입인지를 판단하는 네트워크 기반 침입 탐지 시스템이다. ANIDS는 패킷 수집 및 관리하는 PMM(Packet Management Module), 연관성 있는 패킷들만을 이용해 패턴 그래프를 생성하는 PGGM (Pattern Graph Generate Module), 침입을 탐지하는 IDM(Intrusion Detection Module)으로 구성된다. 특히, PGGM은 Apriori 알고리즘을 이용해 $Sup_{min}$보다 큰 연관규칙의 후보 패킷을 찾은 후, 연관규칙의 신뢰도를 측정하여 최소 신뢰도 $Conf_{min}$보다 큰 연관규칙의 패턴 그래프를 생성한다. ANIDS는 패킷간의 연관성을 분석하여 침입인지를 탐지 할 수 있는 패턴 그래프를 사용함으로써, 침입 탐지의 긍정적 결함 오류를 감소시킬 수 있으며, 완벽한 패턴 그래프 패턴이 생성되기 전에, 이미 침입으로 판정된 패턴 그래프 패턴과 비교하여 유사한 패턴 형태를 침입으로 간주하므로 기존의 침입 탐지 시스템에 비해 침입 탐지속도를 감소시키고 침입 탐지율을 증가시킬 수 있다.
시간 데이타마이닝은 기존 데이타마이닝에 시간 개념을 추가하여 "시간값을 가진 대용량 데이타로부터 이전에 잘 알려지지는 않았지만, 묵시적이고 잠재적으로 유용한 시간 지식을 탐사하는 기술"로 정의된다. 시간 지식이란 주기적 패턴, 캘린더 패턴, 경향 등과 같이 시간 의미와 시간 관계를 가진 지식을 말한다. 실세계에서는 환자의 병력, 상품 구매 이력, 웹 로그 등과 같은 다양한 시간 데이타가 존재하며 이로부터 여러 형태의 유용한 시간 지식을 찾아낼 수 있다. 데이타마이닝에 대한 연구가 진행되면서 순차 패턴, 유사 시계열 탐사, 주기적 연관규칙 탐사 등과 같이 시간 지식을 탐사하고자 하는 시간 데이타마이닝에 대한 부분적인 연구가 수행되었다. 그러나 기존 연구는 단순히 데이타의 발생 순서 및 유사한 패턴을 찾아내는데 중점을 두고 있어 데이타가 포함하고 있는 시간 의미와 시간 관계를 탐사하는데 부족하며, 시간 지식의 전체적인 측면보다는 연관 규칙과 같은 일부분만을 다루고 있다는 문제점을 가지고 있다. 따라서 이 논문에서는 시간 데이타마이닝에 대한 체계적인 연구를 위하여 시간 데이타마이닝에 대한 기존 연구 내용과 해결해야 할 문제점을 분석하고 이를 바탕으로 전체적인 프레임워크를 제시하였다. 또한 그 구현 방안 및 적용평가를 수행하였다. 프레임워크에서는 시간 데이타마이닝 모델을 제안하고, 이를 바탕으로 시간 데이타마이닝 질의어와 시간 지식을 탐사할 수 있는 시간 데이타마이닝 시스템을 설계하였다.
텍스트 형태의 자료에서 유용한 정보를 추출하는 텍스트 마이닝 기법은 데이터 마이닝의 한 분야이다. 본 연구에서는 암반공학 분야의 대표적인 국제 학술지인 IJRMMS과 RMRE에 2001년 이후 게재된 논문의 제목과 주요어를 대상으로 텍스트 마이닝 기법을 적용하여 주요 연구 동향과 시계열 트렌드, 연구 분야 상관관계 등을 파악하였으며 이를 이해하기 쉽도록 가시화하였다. 분석 결과 주요 연구 분야는 두 학술지 모두 유사하였으나 연관관계 분석 결과 IJRMMS의 경우 'rock'을 기반으로 1개의 큰 그룹과 소규모 그룹이 형성된 반면 RMRE는 중규모의 그룹이 형성되고 이 그룹 간에 연결이 형성되는 구조가 나타났다. 또한 시계열 자료로 변환하여 군집 분석과 각 주제어의 기울기 자료로 분석한 결과 일부 하강 주제어들이 있었으나 양적인 측면에서 차이가 있을 뿐 대부분 논문 수가 증가하는 것으로 나타났다.
최근 정보기술이 발달하면서 수많은 자료들이 체계화된 데이터베이스에 저장이 되고, 기업의 데이터베이스의 규모는 폭발적으로 증가되고 있다. 데이터 마이닝(Data Mining)은 이런 방대한 자료의 분석을 통해, 그 속에 숨어있는 의미를 찾는 과정이라고 볼 수 있다. 본 논문에서는 자동차 마케팅에서 이용 가능한 데이터를 데이터 마이닝 분석 기법중의 하나인 연관규칙(association rule)에 따라 분석하였다. 본 논문에서 제시하고자 하는 바는 기존 고객에 대한 분류 및 고객 속성파악, 고객 분류 및 분석에 따른 고객의 연관규칙을 수행하여 해당 기업의 전략적 마케팅 수립을 통해 경영 과학적으로 접근할 수 있는 데이터 마이닝 분석에 관한 사례 연구이다. 본 논문의 분석 사례를 통하여 자동차 분야의 특성에 따라 효과적인 분석 및 의사결정과 더 나아가 CRM마케팅, 동향분석 및 예측 등에 유용한 정보를 분석할 수 있는 사례로 활용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.