DOI QR코드

DOI QR Code

Assoication Rule Analysis between lifestyle risk behaviors and multimorbidity: Findings from KHANES

국민건강영양조사 자료를 활용한 라이프스타일 위험요인과 다중이환간의 연관관계분석

  • Hyun-Ju Lee (Dept. of Health Administration, Jungwon University) ;
  • Sungmin Myoung (Dept. of Health Administration, Jungwon University)
  • Received : 2023.12.15
  • Accepted : 2023.12.19
  • Published : 2024.02.29

Abstract

Objectives: This study used an efficient data mining algorithm to explore association rules between the lifestyle risk behaviors and multimorbidity (having more than one chronic disease) in Korean adults. Methods: We used data from the 8th Korean National Health and Nutrition Examination Survey(2019-2020) for 7,609 adults aged ≥19 years. This study was undertaken where 6 lifestyle risk behaviors and 11 morbidities were analyzed using R and Rstudio for the ARM. Results: Among 117 association rules, combinations of hypertension, dyslipidemia and diabetes, hypertension were important role in inadequate sleep, physical inactivity and inadequate weight. Conclusion: The findings of this study are significant because they demonstrate the importance of lifestyle risk factors and the role of multiple chronic diseases using big data analytics such as association rule mining. We recommend developing selective and focused health education programs, such as exercise programs to address physical inactivity, dietary interventions to address inadequate weight, and mental health education programs to address inadequate sleep.

목적: 본 논문에서는 대한민국 성인의 라이프스타일 위험요인과 복합만성질환간의 연관성 규칙을 탐색하여 보건교육프로그램에 필요한 방향성과 기초정보를 제공하는데 목적을 둔다. 방법: 제8기 국민건강영양조사 중 2019년부터 2020년까지 만 19세 이상 성인 7,609명을 대상으로 하였으며, 6개의 라이프스타일 위험요인과 11가지 이환질환에 대하여 R과 R 스튜디오를 이용하여 연관규칙마이닝을 수행하였다. 결과: 본 연구 결과를 통하여 연관규칙마이닝과 같은 데이터마이닝 기법을 통해 생활 습관 위험 요인의 중요성과 여러 만성 질환의 역할을 보여줬다는 점에서 의미가 있다. 결론: 상기 결과를 통하여 신체 활동 부족을 해결하기 위한 운동 프로그램, 부적절한 체중을 해결하기 위한 식이 중재, 부적절한 수면을 해결하기 위한 정신건강 교육프로그램과 같은 선택적이고 집중적인 건강교육 프로그램에 대한 개발의 필요성이 요구된다.

Keywords

Acknowledgement

본 과제(결과물)는 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다(2021RIS-001(1345370811)).

References

  1. 이인희, 신아미, 손창식, 박희준, 김중휘, 박상영, 최진호, 김윤년. (2010). 데이터 마이닝을 활용한 뇌경색증과 동반되는 질환의 연관성 분석. 대한물리치료학회지, 22(1), 75-81. 
  2. 이윤미, 신지은. (2020). 건강행위 실천에 따른 운동실천율 분석: 국민건강영양조사 2016~2018년 자료를 이용하여. 한국체육과학회, 29(5), 1281-1291. 
  3. 이정진. (2011). R, SAS, MS-SQL을 활용한 데이 터마이닝. 서울: 자유아카데미.
  4. 임영명, 박지혜. (2023). 지역사회 노인의 라이프 스타일 위험요인이 일상생활 활동과 인지기능에 미치는 영향. 재활치료과학, 12(4), 111-122.  https://doi.org/10.22683/TSNR.2023.12.4.111
  5. 임재순, 이경준, 조영석. (2010). 발생빈도를 고려한 연관성 분석 연구. 한국데이터정보과학회지, 21(6), 1061-1069. 
  6. Burton SH, Morris RG, Giraud-Carrier CG. (2014). Mining useful association rules from questionnaire data. Intelligent Data Analysis, 18(3), 479-494.  https://doi.org/10.3233/IDA-140652
  7. Charlson ME, Pompei P, Ales KL, MacKenzie CR. (1987). A newmethod of classifying prognostic comorbidity in longitudinalstudies: development and validation. J Chronic Dis, 40, 373-83.  https://doi.org/10.1016/0021-9681(87)90171-8
  8. Feinstein AR. (1970). The pre-therapeutic classification of co-morbidity in chronic disease. Journal of Chronic Diseases, 23, 455-68.  https://doi.org/10.1016/0021-9681(70)90054-8
  9. Hekmatpou D, Shamsi M, Zamani M. (2013). The effect of a healthy lifestyle program on the elderly's health in Arak. Indian Journal of Medical Sciences, 67(3-4), 70-77.  https://doi.org/10.4103/0019-5359.121119
  10. Leejin K, Sungmin M. (2018). Comorbidity Study of Attention-deficit Hyperactivity Disorder (ADHD) in Children: Applying Association Rule Mining (ARM) to Korean National Health Insurance Data. Iranian Journal of Public Health, 47(4), 481-488. 
  11. Linn BS, Linn MW, Gurel L. (1968). Cumulative illness rating scale. J Am Geriatr Soc, 16, 622-6.  https://doi.org/10.1111/j.1532-5415.1968.tb02103.x
  12. Li Y, Schoufour J, Wang D, Dhana K, Pan A, Liu X, Song M, Liu G, Shin HJ, Sun, Q, Al-Shaar L, Wang M, Rimm EB, Hertzmark E, Stampfer MJ, Willett WC, Franco OH, Hu FB. (2020). Healthy lifestyle and life expectancy free of cancer, cardiovascular disease, and type 2 diabetes: Prospective cohort study. British Medical Journal, 368, l6669. 
  13. Marengoni A, Angleman S, Melis R, Mangialasche F, KarpA, Garmen A. (2011). Aging with multimorbidity: a systematicreview of the literature. Ageing Res Rev, 10, 430-9.  https://doi.org/10.1016/j.arr.2011.03.003
  14. Mamalaki E, Charisis S, Anastasiou CA, Ntanasi E, Georgiadi K, Balomenos V, Kosmidis MH, Dardiotis E, Hadjigeorgiou G, Sakka P, Scarmeas N, Yannakoulia M, M. (2022). The longitudinal association of lifestyle with cognitive health and dementia risk: Findings from the HELIAD study. Nutrients, 14, 2818. 
  15. Park SH, Jang SY, Kim H. (2014). An association rule mining-based framework for understand lifestyle risk behaviors. PloS One, 9(2), e88859 
  16. Richard AG, Shari ML, Peter AB, Gibson P, Marcel ES, Bruce SF. (2016). Multimorbidity Patterns in the United States: Implications for Research and Clinical Practice. The Journals of Gerontology: Series A, 71(2), 215-220.  https://doi.org/10.1093/gerona/glv199
  17. Saint JM, Krueger PM. (2017). Health lifestyle behaviors among U.S. adults. Social Sci ence and Medicine - Population Health, 3, 89-98. 
  18. Schoenborn CA. (1986). Health Habits of U.S. Adults, 1985: the "Alameda 7" Revisited. Public Health Rep, 101(6), 571-580. 
  19. Tai YM, Chiu HW. (2009). Comorbidity study of ADHD: Applying association rule mining (ARM) to National Health Insurance Database of Taiwan. Int J M Inform, 78(12), e75-83.  https://doi.org/10.1016/j.ijmedinf.2009.09.005
  20. Tornero-Quinones I, Saez-Padilla J, Espina Diaz A, Abad Robles MT, Sierra Robles A. (2020). Functional ability, frailty and risk of falls in the elderly: Relations with autonomy in daily living. International Journal of Environmental Research and Public Health, 17(3), 1006. 
  21. Van den Akker M, Buntinx F, Knottnerus JA. (1996). Comorbidity or multimorbidity: what's in a name? A review of literature. European Journal of General Practice, 2, 65-70. https://doi.org/10.3109/13814789609162146