• Title/Summary/Keyword: 연결 도파관

Search Result 45, Processing Time 0.028 seconds

Ku-band Photonic Bandgap Waveguide Switch with an Increased Frequency Bandwidth (PBG 기판을 사용한 광대역 도파관 스위치 설계)

  • 박병권;신임섭;김문일
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.34-38
    • /
    • 2002
  • 기존에 제안된 도파관 스위치의 경우, 도파관의 E-plane에 PBG 기판을 내장하게 되는데, 이 경우 PBG 기판의 저항값을 조절해주는 MEMS 스위치의 바이어스 라인에 대한 문제점이 발생한다 본 논문에서는 PBG 기판을 도파관의 H-plane에 놓음으로써 바이어스 라인을 RF로부터 쉽게 분리하고, 또한 단일 공진 주파수를 갖는 PBG의 경우에 제한된 기판의 길이로 인하여 bandwidth가 좁아지는 문제점을 서로 다른 공진 주파수를 갖는 PBG 기판의 연결을 통해서 bandwidth를 약 80%이상 증가시킬 수 있음을 보였다.

  • PDF

Bandpass Filter Using Folded Substrate Integrated Waveguide Structure (접힌 기판 집적형 도파관 구조를 이용한 대역통과 필터)

  • Yun, Tae-Soon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.965-970
    • /
    • 2018
  • In this paper, the transition of the folded substrate integrated waveguide (FSIW) using two substrates is suggested and applied to the bandpass filter. The FSIW has similar characteristics with the SIW and can be reduced the width of the SIW. The transition between the FSIW to the microstrip is designed by using shorted quarter wavelength line. Also, the bandpass filter is designed by using the FSIW and the elliptic lowpass filter of 5 section. Fabricated bandpass filter has the center frequency of 5.75 GHz and the bandwidth of 33.2%. Also, the insertion loss and return loss at the center frequency are 0.63dB and 19.1dB, respectively.

A Method of Improving RF Voltage Uniformity Along the Longitudinal Axis in Waveguide Lasers Excited by Radio Frequency (고주파 여기에 의한 도파관형 레이저에서의 도파관 종축에 따른 고주파 전계의 불균일성의 해소책)

  • Kim, Youn-Myung;Lee, Kyung-Min;Park, Jong-Whoan;Youn, Chan-Eui
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.4
    • /
    • pp.113-119
    • /
    • 1989
  • With optimal inductors shunted at the ends of the waveguide of RF exciting laser, the voltage variation can be reduced dramatically. If multiple inductores are shunted at the appropriate positions, almost the perfect RF uniformity is possible. All the optimum inductances are derived from the unique method of transmission line theory, which illustrates visually the whole variation of standing wave pattern along the hollow waveguide.

  • PDF

A Numerical Method for Wave Reflection and Transmission Due to Local Non-Uniformities in Waveguides at High Frequencies (국부적 불연속을 가진 도파관의 고주파수 대역 파동 반사 및 투과 해석 기법)

  • Ryue, Jung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.5
    • /
    • pp.314-324
    • /
    • 2010
  • In waveguide structures, waves may be partially reflected by local non-uniformities. The effects of local non-uniformities has been previously investigated by means of a combined spectral element and finite element (SE/FE) method at relatively low frequencies. However, since the SE is formulated based on a beam theory, the SE/FE method is not appropriated for analysis at higher frequencies where complex deformation of the waveguide occurs. So it is necessary to extend this approach for high frequencies. For the wave propagation at higher frequencies, a combined spectral super element and finite element (SSE/FE) method is introduced in this paper. As an example of the application of this method, wave reflection and transmission due to a local defect in a rail are simulated at frequencies between 20kHz and 30kHz. Also numerical errors are evaluated by means of the conservation of the incident power.

A Coaxial Waveguide-based Spatial Combiner Using Finline-to-Microstrip Transitions (핀라인-마이크로스트립 변환을 이용한 동축선로 도파관 형태의 공간 결합기)

  • Kim, Bo-Ki;Lee, Su-Hyun;Kim, Hyoung-Jong;Shin, Suk-Woo;Kim, Sang-Hoon;Kim, Jae-Duk;Choi, Jin-Joo;Kim, Seon-Joo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.5
    • /
    • pp.79-86
    • /
    • 2011
  • In this paper, a S-band coaxial waveguide-based spatial combiner is proposed. The proposed combiner consists of coaxial waveguide, impedance transformer, and finline-to-microstrip transformer. The coaxial waveguide is used as the host of the combining circuits for higher output power and better uniformity by equally distributing the input power to each element. The finline-to-microstrip transformer is designed by using antipodal antenna, and obtained low reflection coefficient by applying the small reflection theorem. The measurement results show the coaxial waveguide combiner has a maximum combining efficiency of 95%.

Design of a Ka-Band Orthomode Transducer (Ka-대역 직교모드변환기 설계)

  • 이종경;채범용;박동희;안병철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.1
    • /
    • pp.110-118
    • /
    • 2004
  • In this paper, a method is presented for the design of an orthomode transducer(OMT) operating at 21/31GHz frequency bands. A square waveguide is used in the common port while the WR-34 standard rectangular waveguide is used in the straight port. The straight port is connected to the common port via a multi-stage quarter-wave impedance transformer. The side port is coupled to the common port through a slot formed along the center line of the common square waveguide. An impedance transformer is employed to match the impedance of the coupling slot with that of the WR-51 waveguide at the output of the side port. Dimensions of the OMT are iteratively optimized employing the theory of waveguide. The validity of the proposed method is verified by fabricating and testing the designed orthomode transducer.

Layered-Type Dielectric Waveguide Filter Using Ceramic (세라믹을 이용한 적층형 유전체 도파관 필터)

  • Jang, Young-Soo;Kim, Jong-Chel;Kim, Seung-Wan;Lee, Kie-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.2
    • /
    • pp.122-127
    • /
    • 2013
  • Layered-type dielectric waveguide filters were designed. As the order of layers increased the fabrication process for dielectric waveguide filters which the resonator parts were connected by the lateral direction has many difficulties. The proposed structure in this report was designed based on the layered-type for the some parts of resonators. The size of layered-type dielectric waveguide filters installed on the PCB surface were reduced at 25% as compared with the usual waveguide filters by using a relative dielectric constant 22.

A Ku-Band Reduced Height Waveguide to Microstrip Mode Converter with a Short Transition Length (짧은 천이길이를 갖는 Ku-대역 감소단축도파관 대 마이크로스트립 모드 변환기)

  • Oh, Hyun-Seok;Yeorn, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1435-1444
    • /
    • 2008
  • In this paper, we designed a reduced height waveguide(WG) to microstrip mode converter with a short transition length. The mode converter is composed of a mode converter using E-plane probe and a modified impedance transformer. The mode converter was designed using a probe shorted to top of a 50 ohm ridge WG. The modified impedance transformer was designed to connect the mode converter to the reduced height WG. For wide bandwidth operation, the coupling of the two parts was tuned. The structure of the mode converter was optimized for low loss and wide bandwidth, and the optimized mode converter was fabricated. The performance of the mode converter was extracted using the thru and line S-parameters for back-to-back connections, and the connector loss was calibrated. The mode converter has a right angle structure and short transition length, 7.2 mm. The mode converter shows excellent performances; the insertion loss of 0.12 dB at 15 GHz, and the return loss above 10 dB for the full Ku-band.

Design and Implementation of the Hi인 Power Ka-band Waveguide Diplexer with an E-plane T-junction (고전력 전송이 가능한 Ka 대역 E-평면 T형 분기 도파관 다이플렉서의 설계 및 구현)

  • Yun So-Hyeun;Uhm Man-Seok;Yom In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.7 s.98
    • /
    • pp.732-739
    • /
    • 2005
  • In this paper, the design and implementation of the Ka-band(20/30 GHz) waveguide diplexer with an E-plane T-junction are described. The waveguide diplexer consists of a transmit filter and a receive filter combined to the antenna port via an E-plane T-junction. The reason why the E-plane T-junction structure was selected is to reduce PIM(Passive Intermodulation) level as the split-plane is located in the low electrical current zone. The optimization was performed using the equivalent circuit so that the computation time might reduce. The structure of the diplexer was designed to handle high power and the multipaction analysis was performed. The multipaction margin was greater than 12 dB and satisfied with ESA/ESTEC recommendation. The manufactured diplexer shows minimum return loss of 22 dB, maximum insertion loss of 0.20 dB and maximum isolation of -40 dB for both transmitted receive bands. Those mean the analysis results of the waveguide diplexer were well agreed with the electrical performance test.

Design of a compact coplanar waveguide-fed 2-element quasi-Yagi antenna (코플래너 도파관으로 급전되는 소형 2-소자 준-야기 안테나 설계)

  • Baek, Woon-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2199-2205
    • /
    • 2016
  • In this paper, a design method for a coplanar waveguide (CPW)-fed 2-element quasi-Yagi antenna (QYA) is studied. A balun between CPW and coplanar strip (CPS) which feeds a planar dipole is implemented by connecting the one end of ground strips in a CPW to a signal strip. The antenna size is reduced by bent strip dipole and reflector, and an integrated balun. The proposed antenna was designed for the operation in a UHF radio frequency identification (RFID) band of 902-928 MHz, and the effects of various parameters such as dipole length, reflector length, distance between dipole and reflector, feed position were examined. The antenna with a size of $90mm{\times}80mm$ was fabricated on an FR4 substrate, and the experiment results reveal a frequency band of 885-942 MHz for a voltage standing wave ratio < 2, a gain > 4.3 dBi, and a front-to-back ratio > 7 dB over the frequency band for the UHF RFID.