• Title/Summary/Keyword: 연결성 향상

Search Result 1,202, Processing Time 0.036 seconds

Arthroscopic Anterior Cruciate Ligament Reconstruction using Fresh Frozen Achilles Allograft - Clinical results, 2nd look Arthroscopic and Histologic findings - (신선 동결 아킬레스 동종건을 이용한 전방 십자 인대 재건술 - 임상적 결과, 2차 관절경 및 조직학적 소견 -)

  • Chun Churl Hong;Ha Dae Ho;Choi Min Kyu;You Son Soo
    • Journal of the Korean Arthroscopy Society
    • /
    • v.5 no.1
    • /
    • pp.7-12
    • /
    • 2001
  • Purpose : We observed usability of allograft by evaluating the clinical results, second look arthroscopic and histologic findings at last follow up after anterior cruciate ligament(ACL) reconstruction using by fresh frozen Achilles allograft. Materials and Methods : We analyzed in 58 patients(59 cases) by subjective and objective parameters, Telos stress arthrometer and Modified Feagin Scoring System. The average age and follow up period was 25 years(ranging from 18 to 49 years), and 15 months(ranging from 12 to 19 months). Among them we studied second look arthroscopic and histologic findings in 16 patients. Results : The mean Lysholm Score wits improved from 60 to 88.2 as well the anterior translation was improved from 7.1 min to 2.3mm at last follow up. The second look arthroscopic findings were close to normal in ligament thickness, tension and showed revasculization at the holly attachment site. Light microscope(LM) findings showed dense cellularity like a normal ligament. In electron microscope(EM) collagen fibrils showed parallel arrangement longitudinally and unimodal pattern diameter close to normal tissue in the transverse section. Conclusion : We think that the fresh frozen Achilles allograft is a good substitution of autograft in cruciate ligament reconstruction.

  • PDF

A study on nonlinear crash analysis of railway tankcar according to the overseas crashworthiness regulations (해외 충돌안전규정에 따른 유류탱크화차의 비선형충돌해석 연구)

  • Son, Seung Wan;Jung, Hyun Seung;Ahn, Seung Ho;Kim, Jin Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.843-850
    • /
    • 2020
  • The purpose of this study is to evaluate the structural risk and weakness of a railway tank car through nonlinear collision analysis according to overseas collision safety standards. The goal is to propose a crash safety design guideline for railway tank cars for transporting dangerous goods in Korea. We analyzed the buffer impact test procedure of railway freight cars prescribed in EN 12663-2 and the tank puncture test criteria prescribed in 49CFR179. A nonlinear finite element model according to each standard was modeled using LS-DYNA, a commercial finite element analysis solver. As a result of the buffing impact test simulation, it was predicted that plastic deformation would not occur at a collision speed of 6 km/h or less. However, plastic deformation was detected at the rear of the center sill and at the tank center supporting the structure at a collision speed of 8 km/h or more. As a result of a head-on test simulation of tank puncture, the outer tank shell was destroyed at the corner of the tank head when 4% of the kinetic energy of the impacter was absorbed. The tank shell was destroyed in the area of contact with the impacter in the test mode analysis of tank shell puncture when the kinetic energy of the moving vehicle was reduced by 30%. Therefore, the simulation results of the puncture test show that fracture at the tank shell and leakage of the internal material is expected. Consequently, protection and structural design reinforcement are required on railway tank cars in Korea.

Life Assessment of Gas Turbine Blade Based on Actual Operation Condition (실 운전조건을 고려한 가스터빈 블레이드 수명평가)

  • Choi, Woo Sung;Song, Gee Wook;Chang, Sung Yong;Kim, Beom Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1185-1191
    • /
    • 2014
  • Gas turbine blades that have complex geometry of the cooling holes and cooling passages are usually subjected to cyclic and sustained thermal loads due to changes in the operating characteristic in combined power plants; these results in non-uniform temperature and stress distributions according to time to gas turbine blades. Those operation conditions cause creep or thermo-mechanical fatigue damage and reduce the lifetime of gas turbine blades. Thus, an accurate analysis of the stresses caused by various loading conditions is required to ensure the integrity and to ensure an accurate life assessment of the components of a gas turbine. It is well known that computational analysis such as cross-linking process including CFD, heat transfer and stress analysis is used as an alternative to demonstration test. In this paper, temperatures and stresses of gas turbine blade were calculated with fluid-structural analysis integrating fluid-thermal-solid analysis methodologies by considering actual operation conditions. Based on analysis results, additionally, the total lifetime was obtained using creep and thermo-mechanical damage model.

A Study on Design Education Method for Development of Self-Directed Learning Ability (자기주도학습 능력 개발을 위한 설계교육 방법에 관한 연구)

  • Han, Ji-Young;Lee, Min-Young;Jung, Bo-Ra
    • Journal of Engineering Education Research
    • /
    • v.12 no.4
    • /
    • pp.115-125
    • /
    • 2009
  • The purpose of this study was to suggest efficient method for development of learner's self-directed learning ability through literature review on self-directed learning, component of self-directed learning, development of self-directed learning ability, design education steps adopting problem based learning and project based learning. This study was conducted through literature review on self-directed learning and development of self-directed learning, design education. Design education and project based learning process and problem based learning to extract the items that are common to bring out five steps, and differences in levels of learners based on self-learning led to Grow(1991) model to connect the lessons of 9 steps present the design education steps, that is, the learners ready for learning, the definition of problem and recognition of necessity, team building, related data collection, team learning about real problem with the teacher, select optimal solution, student-centered discussion, models and product creation, testing and evaluation, complement.

Review of Failure Mechanisms on the Semiconductor Devices under Electromagnetic Pulses (고출력전자기파에 의한 반도체부품의 고장메커니즘 고찰)

  • Kim, Dongshin;Koo, Yong-Sung;Kim, Ju-Hee;Kang, Soyeon;Oh, Wonwook;Chan, Sung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.37-43
    • /
    • 2017
  • This review investigates the basic principle of physical interactions and failure mechanisms introduced in the materials and inner parts of semiconducting components under electromagnetic pulses (EMPs). The transfer process of EMPs at the semiconducting component level can be explained based on three layer structures (air, dielectric, and conductor layers). The theoretically absorbed energy can be predicted by the complex reflection coefficient. The main failure mechanisms of semiconductor components are also described based on the Joule heating energy generated by the coupling between materials and the applied EMPs. Breakdown of the P-N junction, burnout of the circuit pattern in the semiconductor chip, and damage to connecting wires between the lead frame and semiconducting chips can result from dielectric heating and eddy current loss due to electric and magnetic fields. To summarize, the EMPs transferred to the semiconductor components interact with the chip material in a semiconductor, and dipolar polarization and ionic conduction happen at the same time. Destruction of the P-N junction can result from excessive reverse voltage. Further EMP research at the semiconducting component level is needed to improve the reliability and susceptibility of electric and electronic systems.

Improvement of Unicast Traffic Performance in High-availability Seamless Redundancy (HSR) Using Port Locking (PL) Algorithm (Port Locking (PL) 알고리즘을 이용한 HSR (High-availability Seamless Redundancy)의 유니캐스트 트래픽 성능개선)

  • Abdulsam, Ibraheem Read;Kim, Se Mog;Choi, Young Yun;Rhee, Jong Myung
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.1
    • /
    • pp.51-56
    • /
    • 2014
  • High-availability seamless redundancy (HSR) is a protocol for fault-tolerant Ethernet (FTE) networks. It provides two frame copies and each copy is forwarded on a separate physical path, which provides zero fail-over time. Therefore, the HSR is becoming a potential candidate for various real-time FTE applications. However, the generation and circulation of unnecessary frames due to the duplication of every sending frame is inherent drawback of HSR. Such drawback degrades the performance of the network and may deplete its resources. In this paper, we present a new algorithm called port locking (PL) based on the media access control (MAC) address to solve the abovementioned problem in popular connected-rings network. Our approach makes the network gradually learn the locations of the source and the destination nodes without relying on network control frames. It then prunes all the rings that do not contain the destination node by locking corresponding rings' entrance ports. With the PL algorithm, the traffic can be significantly reduced and therefore the network performance will be greatly enhanced specially in a large scale connected-rings network. Analytical results are provided to validate the PL algorithm.

Using Virtual Reality in Design of Street Space by Citizen Participation (주민참여형 가로공간설계에서 가상현실(VR)의 활용)

  • Lee, Seul-Bee;Eo, Sang-Jin;Ryu, Kyung-Moo;Kim, Young-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.77-85
    • /
    • 2018
  • Recently, many people have attempted to combine the 4th industry in various fields. Citizen participation has also become more important in the policy making and decision making process. Therefore, this study examined ways to encourage citizen participation by integrating the 4th industry in the field of urban planning and design. The research method was to design street space using virtual reality, and to examine the preference of design and the satisfaction of using a virtual reality device for Cheongju citizens and residents. The main result is that the use of VR in the design process of street space can achieve a sufficient outcome in terms of inducing resident participation. The opinions of the respondents before and after the VR experience were different from each other. After the VR experience, understanding, participation and interest in design were improved. On the other hand, during the course of the study, there are many difficulties in obtaining a place that satisfied the conditions of the PC-VR equipment. Although it can be used by connecting a smart phone and a VR device, the constraint of free movement and degradation of the graphic quality are inevitable. In addition, it is difficult to operate simple interfaces because VR devices are not yet popularized. Accordingly, it will be necessary to popularize and commercialize VR equipment and establish a legal basis.

Study On The Signal Radar Plan Position Indicator Scope Of The Data Expressed Scanning System Implemented As An Sticking Image On LCD Display (Plan Position Indicator Scope 주사방식의 Radar 영상신호를 LCD Display에 잔상영상으로 데이터 표출 구현에 관한 연구)

  • Shin, Hyun Jong;Yu, Hyeung Keun
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.94-101
    • /
    • 2015
  • The display device is an important video information communication system device to connect between human and device. it transfers the information as characters, shapes, images and pattern to enable recognizing by eyes. Theres absolutely needs some key functions and role to quickly display informations. It can analyse a information through a PPI Scope of a cathode-ray tube(CRT) displays information which can perform a role. this research proposed a radar device to display informations as received signal. The radar display researches can apply to fixed function graphics pipeline algorithms of the large capacity type through a vertical blanking interval and buffer swap of display unit. Also, it can be possible to apply to performed algorithms to FPGA logic without high-performance graphics processing unit GPU through synchronization which can implement a display system. In this paper, we improved the affordability and reliability through proposed research. 이So, we have studied the radar display unit which can change a flat display from radar display of CRT radar display.

Study on the shaping process of turbocharger nozzle slide joint (터보차저 노즐 슬라이드 조인트의 정형공정에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.107-114
    • /
    • 2017
  • A turbocharger is an engine supercharger that is driven by exhaust gas. It improves the output and fuel efficiency by increasing the charging efficiency of the mixture gas, which is achieved by changing the rotatory power of the turbine connected to the exhaust passage. It is important to control the supercharging for this purpose. A nozzle slide joint is one of the core parts. Austenitic stainless steel is currently used as the material for this part, and its excellent mechanical properties include high heat resistance and corrosion resistance. However, because of its poor machinability, there are many difficulties in producing products with complicated shapes. Machining is used in the production of nozzle slide joints for high dimensional accuracy after metal powder injection molding. As design variables in this study, we investigated the sintering temperature, product stress, deformation rate, radius of curvature of the punch, and angle of the chamfer punch, which are related to the strain and shapes. The goal is to suggest a forming process using Nitronic 60 that does not require machining to manufacture a nozzle slide joint for a turbocharger. Accordingly, we determined the best process environment using finite-element analysis, the signal-noise ratio, and the Taguchi method for experiment design. The relative density and hydrostatic pressure of the final product were in accordance with the results of the finite element analysis. Therefore, we conclude that the Taguchi method can be applied to the design process of metal powder injection molding.

Cycle Extendability of Torus Sub-Graphs in the Enhanced Pyramid Network (개선된 피라미드 네트워크에서 토러스 부그래프의 사이클 확장성)

  • Chang, Jung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.8
    • /
    • pp.1183-1193
    • /
    • 2010
  • The pyramid graph is well known in parallel processing as a interconnection network topology based on regular square mesh and tree architectures. The enhanced pyramid graph is an alternative architecture by exchanging mesh into the corresponding torus on the base for upgrading performance than the pyramid. In this paper, we adopt a strategy of classification into two disjoint groups of edges in regular square torus as a basic sub-graph constituting of each layer in the enhanced pyramid graph. Edge set in the torus graph is considered as two disjoint sub-sets called NPC(represents candidate edge for neighbor-parent) and SPC(represents candidate edge for shared-parent) whether the parents vertices adjacent to two end vertices of the corresponding edge have a relation of neighbor or sharing in the upper layer of the enhanced pyramid graph. In addition, we also introduce a notion of shrink graph to focus only on the NPC-edges by hiding SPC-edges within the shrunk super-vertex on the resulting shrink graph. In this paper, we analyze that the lower and upper bounds on the number of NPC-edges in a Hamiltonian cycle constructed on $2^n{\times}2^n$ torus is $2^{2n-2}$ and $3{\cdot}2^{2n-2}$ respectively. By expanding this result into the enhanced pyramid graph, we also prove that the maximum number of NPC-edges containable in a Hamiltonian cycle is $4^{n-1}$-2n+1 in the n-dimensional enhanced pyramid.